IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v99y1998i3d10.1023_a1021759318653.html
   My bibliography  Save this article

Prox-Regularization Methods for Generalized Fractional Programming

Author

Listed:
  • M. Gugat

    (University of Trier)

Abstract

If a fractional program does not have a unique solution or the feasible set is unbounded, numerical difficulties can occur. By using a prox-regularization method that generates a sequence of auxiliary problems with unique solutions, these difficulties are avoided. Two regularization methods are introduced here. They are based on Dinkelbach-type algorithms for generalized fractional programming, but use a regularized parametric auxiliary problem. Convergence results and numerical examples are presented.

Suggested Citation

  • M. Gugat, 1998. "Prox-Regularization Methods for Generalized Fractional Programming," Journal of Optimization Theory and Applications, Springer, vol. 99(3), pages 691-722, December.
  • Handle: RePEc:spr:joptap:v:99:y:1998:i:3:d:10.1023_a:1021759318653
    DOI: 10.1023/A:1021759318653
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1021759318653
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1021759318653?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. K. Boufi & A. Roubi, 2017. "Dual method of centers for solving generalized fractional programs," Journal of Global Optimization, Springer, vol. 69(2), pages 387-426, October.
    2. Birbil, S.I. & Frenk, J.B.G. & Zhang, S., 2004. "Generalized Fractional Programming With User Interaction," Econometric Institute Research Papers ERS-2004-033-LIS, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Smail Addoune & Karima Boufi & Ahmed Roubi, 2018. "Proximal Bundle Algorithms for Nonlinearly Constrained Convex Minimax Fractional Programs," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 212-239, October.
    4. H. Boualam & A. Roubi, 2019. "Proximal bundle methods based on approximate subgradients for solving Lagrangian duals of minimax fractional programs," Journal of Global Optimization, Springer, vol. 74(2), pages 255-284, June.
    5. Birbil, S.I. & Frenk, J.B.G. & Zhang, S., 2004. "Generalized Fractional Programming With User Interaction," ERIM Report Series Research in Management ERS-2004-033-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:99:y:1998:i:3:d:10.1023_a:1021759318653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.