IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v179y2018i3d10.1007_s10957-016-1041-8.html
   My bibliography  Save this article

Set-Valued Systems with Infinite-Dimensional Image and Applications

Author

Listed:
  • J. Li

    (China West Normal University)

  • L. Yang

    (China West Normal University)

Abstract

In infinite-dimensional spaces, we investigate a set-valued system from the image perspective. By exploiting the quasi-interior and the quasi-relative interior, we give some new equivalent characterizations of (proper, regular) linear separation and establish some new sufficient and necessary conditions for the impossibility of the system under new assumptions, which do not require the set to have nonempty interior. We also present under mild assumptions the equivalence between (proper, regular) linear separation and saddle points of Lagrangian functions for the system. These results are applied to obtain some new saddle point sufficient and necessary optimality conditions of vector optimization problems.

Suggested Citation

  • J. Li & L. Yang, 2018. "Set-Valued Systems with Infinite-Dimensional Image and Applications," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 868-895, December.
  • Handle: RePEc:spr:joptap:v:179:y:2018:i:3:d:10.1007_s10957-016-1041-8
    DOI: 10.1007/s10957-016-1041-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-016-1041-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-016-1041-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. K. Zhu & S. J. Li, 2014. "Unified Duality Theory for Constrained Extremum Problems. Part I: Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 738-762, June.
    2. S.-M. Guu & J. Li, 2014. "Vector quasi-equilibrium problems: separation, saddle points and error bounds for the solution set," Journal of Global Optimization, Springer, vol. 58(4), pages 751-767, April.
    3. G. Mastroeni & T. Rapcsák, 2000. "On Convex Generalized Systems," Journal of Optimization Theory and Applications, Springer, vol. 104(3), pages 605-627, March.
    4. R. I. Boţ & E. R. Csetnek & A. Moldovan, 2008. "Revisiting Some Duality Theorems via the Quasirelative Interior in Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 139(1), pages 67-84, October.
    5. Fabián Flores-Bazán & Fernando Flores-Bazán & Cristián Vera, 2012. "A complete characterization of strong duality in nonconvex optimization with a single constraint," Journal of Global Optimization, Springer, vol. 53(2), pages 185-201, June.
    6. F. Cammaroto & B. Di Bella, 2005. "Separation Theorem Based on the Quasirelative Interior and Application to Duality Theory," Journal of Optimization Theory and Applications, Springer, vol. 125(1), pages 223-229, April.
    7. J. Li & S. Q. Feng & Z. Zhang, 2013. "A Unified Approach for Constrained Extremum Problems: Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 69-92, October.
    8. S. K. Zhu & S. J. Li, 2014. "Unified Duality Theory for Constrained Extremum Problems. Part II: Special Duality Schemes," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 763-782, June.
    9. J. Li & G. Mastroeni, 2016. "Image Convexity of Generalized Systems with Infinite-Dimensional Image and Applications," Journal of Optimization Theory and Applications, Springer, vol. 169(1), pages 91-115, April.
    10. A. Maugeri & F. Raciti, 2010. "Remarks on infinite dimensional duality," Journal of Global Optimization, Springer, vol. 46(4), pages 581-588, April.
    11. Z. A. Zhou & X. M. Yang, 2011. "Optimality Conditions of Generalized Subconvexlike Set-Valued Optimization Problems Based on the Quasi-Relative Interior," Journal of Optimization Theory and Applications, Springer, vol. 150(2), pages 327-340, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shengjie Li & Yangdong Xu & Manxue You & Shengkun Zhu, 2018. "Constrained Extremum Problems and Image Space Analysis–Part I: Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 609-636, June.
    2. Fabián Flores-Bazán & Giandomenico Mastroeni & Cristián Vera, 2019. "Proper or Weak Efficiency via Saddle Point Conditions in Cone-Constrained Nonconvex Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 181(3), pages 787-816, June.
    3. Jun Li & Giandomenico Mastroeni, 2018. "Refinements on Gap Functions and Optimality Conditions for Vector Quasi-Equilibrium Problems via Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 696-716, June.
    4. J. Li & G. Mastroeni, 2016. "Image Convexity of Generalized Systems with Infinite-Dimensional Image and Applications," Journal of Optimization Theory and Applications, Springer, vol. 169(1), pages 91-115, April.
    5. M. V. Dolgopolik, 2018. "Augmented Lagrangian functions for cone constrained optimization: the existence of global saddle points and exact penalty property," Journal of Global Optimization, Springer, vol. 71(2), pages 237-296, June.
    6. M. V. Dolgopolik, 2018. "A Unified Approach to the Global Exactness of Penalty and Augmented Lagrangian Functions I: Parametric Exactness," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 728-744, March.
    7. Hong-Zhi Wei & Chun-Rong Chen & Sheng-Jie Li, 2018. "A Unified Characterization of Multiobjective Robustness via Separation," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 86-102, October.
    8. Jiawei Chen & Shengjie Li & Zhongping Wan & Jen-Chih Yao, 2015. "Vector Variational-Like Inequalities with Constraints: Separation and Alternative," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 460-479, August.
    9. Manxue You & Shengjie Li, 2017. "Separation Functions and Optimality Conditions in Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 527-544, November.
    10. Hong-Zhi Wei & Chun-Rong Chen & Sheng-Jie Li, 2018. "Characterizations for Optimality Conditions of General Robust Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 835-856, June.
    11. Fabián Flores-Bazán & William Echegaray & Fernando Flores-Bazán & Eladio Ocaña, 2017. "Primal or dual strong-duality in nonconvex optimization and a class of quasiconvex problems having zero duality gap," Journal of Global Optimization, Springer, vol. 69(4), pages 823-845, December.
    12. Patrizia Daniele & Sofia Giuffrè & Antonino Maugeri & Fabio Raciti, 2014. "Duality Theory and Applications to Unilateral Problems," Journal of Optimization Theory and Applications, Springer, vol. 162(3), pages 718-734, September.
    13. Letizia Pellegrini & Shengkun Zhu, 2018. "Constrained Extremum Problems, Regularity Conditions and Image Space Analysis. Part II: The Vector Finite-Dimensional Case," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 788-810, June.
    14. Yang-Dong Xu & Cheng-Ling Zhou & Sheng-Kun Zhu, 2021. "Image Space Analysis for Set Optimization Problems with Applications," Journal of Optimization Theory and Applications, Springer, vol. 191(1), pages 311-343, October.
    15. Shengkun Zhu, 2018. "Image Space Analysis to Lagrange-Type Duality for Constrained Vector Optimization Problems with Applications," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 743-769, June.
    16. Z. A. Zhou & X. M. Yang, 2011. "Optimality Conditions of Generalized Subconvexlike Set-Valued Optimization Problems Based on the Quasi-Relative Interior," Journal of Optimization Theory and Applications, Springer, vol. 150(2), pages 327-340, August.
    17. Laura Scrimali, 2012. "Infinite Dimensional Duality Theory Applied to Investment Strategies in Environmental Policy," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 258-277, July.
    18. Laura Scrimali & Cristina Mirabella, 2018. "Cooperation in pollution control problems via evolutionary variational inequalities," Journal of Global Optimization, Springer, vol. 70(2), pages 455-476, February.
    19. Zhiang Zhou & Wang Chen & Xinmin Yang, 2019. "Scalarizations and Optimality of Constrained Set-Valued Optimization Using Improvement Sets and Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 944-962, December.
    20. Hong-Zhi Wei & Chun-Rong Chen & Sheng-Jie Li, 2020. "A Unified Approach Through Image Space Analysis to Robustness in Uncertain Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 466-493, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:179:y:2018:i:3:d:10.1007_s10957-016-1041-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.