IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v171y2016i3d10.1007_s10957-016-0992-0.html
   My bibliography  Save this article

Set Approach for Set Optimization with Variable Ordering Structures Part I: Set Relations and Relationship to Vector Approach

Author

Listed:
  • Gabriele Eichfelder

    (Technische Universität Ilmenau)

  • Maria Pilecka

    (Technische Universität Bergakademie Freiberg)

Abstract

This paper aims at combining variable ordering structures with set relations in set optimization, which have been defined using the constant ordering cone before. We provide several new set relations in the context of variable ordering structures, discuss their usefulness, and give different examples from a practical point of view. After analyzing the properties of the introduced relations, we define solution notions for set-valued optimization problems equipped with variable ordering structures. We also relate these new notions to those ones obtained by the so-called vector approach.

Suggested Citation

  • Gabriele Eichfelder & Maria Pilecka, 2016. "Set Approach for Set Optimization with Variable Ordering Structures Part I: Set Relations and Relationship to Vector Approach," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 931-946, December.
  • Handle: RePEc:spr:joptap:v:171:y:2016:i:3:d:10.1007_s10957-016-0992-0
    DOI: 10.1007/s10957-016-0992-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-016-0992-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-016-0992-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luc, Dinh The & Soubeyran, Antoine, 2013. "Variable preference relations: Existence of maximal elements," Journal of Mathematical Economics, Elsevier, vol. 49(4), pages 251-262.
    2. Johannes Jahn, 2015. "Vectorization in Set Optimization," Journal of Optimization Theory and Applications, Springer, vol. 167(3), pages 783-795, December.
    3. Takashi Maeda, 2012. "On Optimization Problems with Set-Valued Objective Maps: Existence and Optimality," Journal of Optimization Theory and Applications, Springer, vol. 153(2), pages 263-279, May.
    4. Marius Durea & Radu Strugariu & Christiane Tammer, 2015. "On set-valued optimization problems with variable ordering structure," Journal of Global Optimization, Springer, vol. 61(4), pages 745-767, April.
    5. J. Y. Bello Cruz & G. Bouza Allende, 2014. "A Steepest Descent-Like Method for Variable Order Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 371-391, August.
    6. Behnam Soleimani, 2014. "Characterization of Approximate Solutions of Vector Optimization Problems with a Variable Order Structure," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 605-632, August.
    7. Truong Q. Bao & Boris S. Mordukhovich, 2014. "Necessary Nondomination Conditions in Set and Vector Optimization with Variable Ordering Structures," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 350-370, August.
    8. Gabriele Eichfelder & Maria Pilecka, 2016. "Set Approach for Set Optimization with Variable Ordering Structures Part II: Scalarization Approaches," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 947-963, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ovidiu Bagdasar & Nicolae Popovici, 2018. "Unifying local–global type properties in vector optimization," Journal of Global Optimization, Springer, vol. 72(2), pages 155-179, October.
    2. Gabriele Eichfelder & Maria Pilecka, 2016. "Set Approach for Set Optimization with Variable Ordering Structures Part II: Scalarization Approaches," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 947-963, December.
    3. Khushboo & C. S. Lalitha, 2023. "Characterizations of set order relations and nonlinear scalarizations via generalized oriented distance function in set optimization," Journal of Global Optimization, Springer, vol. 85(1), pages 235-249, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shokouh Shahbeyk & Majid Soleimani-damaneh & Refail Kasimbeyli, 2018. "Hartley properly and super nondominated solutions in vector optimization with a variable ordering structure," Journal of Global Optimization, Springer, vol. 71(2), pages 383-405, June.
    2. Ovidiu Bagdasar & Nicolae Popovici, 2018. "Unifying local–global type properties in vector optimization," Journal of Global Optimization, Springer, vol. 72(2), pages 155-179, October.
    3. Gabriele Eichfelder & Maria Pilecka, 2016. "Set Approach for Set Optimization with Variable Ordering Structures Part II: Scalarization Approaches," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 947-963, December.
    4. Elena-Andreea Florea, 2018. "Vector Optimization Problems with Generalized Functional Constraints in Variable Ordering Structure Setting," Journal of Optimization Theory and Applications, Springer, vol. 178(1), pages 94-118, July.
    5. T. Q. Bao & B. S. Mordukhovich & A. Soubeyran, 2015. "Variational Analysis in Psychological Modeling," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 290-315, January.
    6. Bettina Zargini, 2022. "Multiobjective Location Problems with Variable Domination Structures and an Application to Select a New Hub Airport," Logistics, MDPI, vol. 6(2), pages 1-13, March.
    7. Glaydston Carvalho Bento & Gemayqzel Bouza Allende & Yuri Rafael Leite Pereira, 2018. "A Newton-Like Method for Variable Order Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 177(1), pages 201-221, April.
    8. Khushboo & C. S. Lalitha, 2023. "Characterizations of set order relations and nonlinear scalarizations via generalized oriented distance function in set optimization," Journal of Global Optimization, Springer, vol. 85(1), pages 235-249, January.
    9. Truong Q. Bao & Lidia Huerga & Bienvenido Jiménez & Vicente Novo, 2020. "Necessary Conditions for Nondominated Solutions in Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 826-842, September.
    10. Marius Durea & Radu Strugariu & Christiane Tammer, 2017. "On Some Methods to Derive Necessary and Sufficient Optimality Conditions in Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 175(3), pages 738-763, December.
    11. Glaydston Carvalho Bento & João Xavier Cruz Neto & Antoine Soubeyran & Valdinês Leite Sousa Júnior, 2016. "Dual Descent Methods as Tension Reduction Systems," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 209-227, October.
    12. P. B. Assunção & O. P. Ferreira & L. F. Prudente, 2021. "Conditional gradient method for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 78(3), pages 741-768, April.
    13. Quartieri, Federico, 2021. "Existence of maximals via right traces," MPRA Paper 107189, University Library of Munich, Germany.
    14. Johannes Jahn, 2022. "Characterizations of the Set Less Order Relation in Nonconvex Set Optimization," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 523-544, June.
    15. Orizon P. Ferreira & Mauricio S. Louzeiro & Leandro F. Prudente, 2020. "Iteration-Complexity and Asymptotic Analysis of Steepest Descent Method for Multiobjective Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 507-533, February.
    16. M. Golestani & H. Sadeghi & Y. Tavan, 2018. "Nonsmooth Multiobjective Problems and Generalized Vector Variational Inequalities Using Quasi-Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 896-916, December.
    17. Johannes Jahn, 2017. "Karush–Kuhn–Tucker Conditions in Set Optimization," Journal of Optimization Theory and Applications, Springer, vol. 172(3), pages 707-725, March.
    18. Haoyang Wu, 2023. "Constructing a type-adjustable mechanism to yield Pareto-optimal outcomes," Papers 2309.01096, arXiv.org, revised Dec 2023.
    19. Gianni Bosi & Magalì E. Zuanon, 2017. "Maximal elements of quasi upper semicontinuous preorders on compact spaces," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 5(1), pages 109-117, April.
    20. Jiawei Chen & Elisabeth Köbis & Markus Köbis & Jen-Chih Yao, 2018. "Image Space Analysis for Constrained Inverse Vector Variational Inequalities via Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 816-834, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:171:y:2016:i:3:d:10.1007_s10957-016-0992-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.