IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v71y2018i2d10.1007_s10898-018-0614-5.html
   My bibliography  Save this article

Hartley properly and super nondominated solutions in vector optimization with a variable ordering structure

Author

Listed:
  • Shokouh Shahbeyk

    (University of Tehran)

  • Majid Soleimani-damaneh

    (University of Tehran)

  • Refail Kasimbeyli

    (Anadolu University)

Abstract

In this paper, we introduce Hartley properly and super nondominated solutions in vector optimization with a variable ordering structure. We prove the connections between Benson properly nondominated, Hartley properly nondominated, and super nondominated solutions under appropriate assumptions. Moreover, we establish some necessary and sufficient conditions for newly-defined solutions invoking an augmented dual cone approach, the linear scalarization, and variational analysis tools. In addition to the theoretical results, various clarifying examples are given.

Suggested Citation

  • Shokouh Shahbeyk & Majid Soleimani-damaneh & Refail Kasimbeyli, 2018. "Hartley properly and super nondominated solutions in vector optimization with a variable ordering structure," Journal of Global Optimization, Springer, vol. 71(2), pages 383-405, June.
  • Handle: RePEc:spr:jglopt:v:71:y:2018:i:2:d:10.1007_s10898-018-0614-5
    DOI: 10.1007/s10898-018-0614-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-018-0614-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-018-0614-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luc, Dinh The & Soubeyran, Antoine, 2013. "Variable preference relations: Existence of maximal elements," Journal of Mathematical Economics, Elsevier, vol. 49(4), pages 251-262.
    2. Kazhal Khaledian & Esmaile Khorram & Majid Soleimani-damaneh, 2016. "Strongly Proper Efficient Solutions: Efficient Solutions with Bounded Trade-Offs," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 864-883, March.
    3. Refail Kasimbeyli, 2013. "A conic scalarization method in multi-objective optimization," Journal of Global Optimization, Springer, vol. 56(2), pages 279-297, June.
    4. G. Y. Chen & X. Q. Yang, 2002. "Characterizations of Variable Domination Structures via Nonlinear Scalarization," Journal of Optimization Theory and Applications, Springer, vol. 112(1), pages 97-110, January.
    5. Behnam Soleimani, 2014. "Characterization of Approximate Solutions of Vector Optimization Problems with a Variable Order Structure," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 605-632, August.
    6. Truong Q. Bao & Boris S. Mordukhovich, 2014. "Necessary Nondomination Conditions in Set and Vector Optimization with Variable Ordering Structures," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 350-370, August.
    7. T. Q. Bao & B. S. Mordukhovich & A. Soubeyran, 2015. "Variational Analysis in Psychological Modeling," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 290-315, January.
    8. Gabriele Eichfelder & Refail Kasimbeyli, 2014. "Properly optimal elements in vector optimization with variable ordering structures," Journal of Global Optimization, Springer, vol. 60(4), pages 689-712, December.
    9. Gabriele Eichfelder, 2011. "Optimal Elements in Vector Optimization with a Variable Ordering Structure," Journal of Optimization Theory and Applications, Springer, vol. 151(2), pages 217-240, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiang Zhou & Wenbin Wei & Fei Huang & Kequan Zhao, 2024. "Approximate weak efficiency of the set-valued optimization problem with variable ordering structures," Journal of Combinatorial Optimization, Springer, vol. 48(3), pages 1-13, October.
    2. Refail Kasimbeyli & Masoud Karimi, 2021. "Duality in nonconvex vector optimization," Journal of Global Optimization, Springer, vol. 80(1), pages 139-160, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elena-Andreea Florea, 2018. "Vector Optimization Problems with Generalized Functional Constraints in Variable Ordering Structure Setting," Journal of Optimization Theory and Applications, Springer, vol. 178(1), pages 94-118, July.
    2. Gabriele Eichfelder & Refail Kasimbeyli, 2014. "Properly optimal elements in vector optimization with variable ordering structures," Journal of Global Optimization, Springer, vol. 60(4), pages 689-712, December.
    3. T. Q. Bao & B. S. Mordukhovich & A. Soubeyran, 2015. "Variational Analysis in Psychological Modeling," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 290-315, January.
    4. Gabriele Eichfelder & Maria Pilecka, 2016. "Set Approach for Set Optimization with Variable Ordering Structures Part I: Set Relations and Relationship to Vector Approach," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 931-946, December.
    5. Zhiang Zhou & Wenbin Wei & Fei Huang & Kequan Zhao, 2024. "Approximate weak efficiency of the set-valued optimization problem with variable ordering structures," Journal of Combinatorial Optimization, Springer, vol. 48(3), pages 1-13, October.
    6. Behnam Soleimani, 2014. "Characterization of Approximate Solutions of Vector Optimization Problems with a Variable Order Structure," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 605-632, August.
    7. Glaydston Carvalho Bento & Gemayqzel Bouza Allende & Yuri Rafael Leite Pereira, 2018. "A Newton-Like Method for Variable Order Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 177(1), pages 201-221, April.
    8. Bettina Zargini, 2022. "Multiobjective Location Problems with Variable Domination Structures and an Application to Select a New Hub Airport," Logistics, MDPI, vol. 6(2), pages 1-13, March.
    9. Truong Q. Bao & Lidia Huerga & Bienvenido Jiménez & Vicente Novo, 2020. "Necessary Conditions for Nondominated Solutions in Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 826-842, September.
    10. Christian Sommer, 2014. "Geometrical and Topological Properties of a Parameterized Binary Relation in Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 815-840, December.
    11. Nergiz Kasimbeyli, 2015. "Existence and characterization theorems in nonconvex vector optimization," Journal of Global Optimization, Springer, vol. 62(1), pages 155-165, May.
    12. Derya Deliktaş, 2022. "Self-adaptive memetic algorithms for multi-objective single machine learning-effect scheduling problems with release times," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 748-784, September.
    13. Gabriele Eichfelder & Maria Pilecka, 2016. "Set Approach for Set Optimization with Variable Ordering Structures Part II: Scalarization Approaches," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 947-963, December.
    14. J. X. Cruz Neto & P. R. Oliveira & A. Soubeyran & J. C. O. Souza, 2020. "A generalized proximal linearized algorithm for DC functions with application to the optimal size of the firm problem," Annals of Operations Research, Springer, vol. 289(2), pages 313-339, June.
    15. Fernando García-Castaño & Miguel Ángel Melguizo-Padial & G. Parzanese, 2023. "Sublinear scalarizations for proper and approximate proper efficient points in nonconvex vector optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 97(3), pages 367-382, June.
    16. Truong Q. Bao & Antoine Soubeyran, 2016. "Variational Analysis in Cone Pseudo-Quasimetric Spaces and Applications to Group Dynamics," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 458-475, August.
    17. Morteza Rahimi & Majid Soleimani-damaneh, 2018. "Robustness in Deterministic Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 137-162, October.
    18. Glaydston Carvalho Bento & João Xavier Cruz Neto & Antoine Soubeyran & Valdinês Leite Sousa Júnior, 2016. "Dual Descent Methods as Tension Reduction Systems," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 209-227, October.
    19. Jia-Wei Chen & Zhongping Wan & Yeol Cho, 2013. "Levitin–Polyak well-posedness by perturbations for systems of set-valued vector quasi-equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(1), pages 33-64, February.
    20. Brian Dandurand & Margaret M. Wiecek, 2016. "Quadratic scalarization for decomposed multiobjective optimization," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(4), pages 1071-1096, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:71:y:2018:i:2:d:10.1007_s10898-018-0614-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.