IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v85y2023i1d10.1007_s10898-022-01203-6.html
   My bibliography  Save this article

Characterizations of set order relations and nonlinear scalarizations via generalized oriented distance function in set optimization

Author

Listed:
  • Khushboo

    (University of Delhi)

  • C. S. Lalitha

    (University of Delhi South Campus)

Abstract

The aim of this paper is to establish scalar characterizations of minimal, weak minimal and strict minimal solutions in terms of a generalized oriented distance function defined on sets in real normed linear space with respect to a point in the space. Further, we study the lower and upper semicontinuity of the generalized oriented distance function.

Suggested Citation

  • Khushboo & C. S. Lalitha, 2023. "Characterizations of set order relations and nonlinear scalarizations via generalized oriented distance function in set optimization," Journal of Global Optimization, Springer, vol. 85(1), pages 235-249, January.
  • Handle: RePEc:spr:jglopt:v:85:y:2023:i:1:d:10.1007_s10898-022-01203-6
    DOI: 10.1007/s10898-022-01203-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-022-01203-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-022-01203-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johannes Jahn, 2015. "Vectorization in Set Optimization," Journal of Optimization Theory and Applications, Springer, vol. 167(3), pages 783-795, December.
    2. Yu Han & Nan-jing Huang, 2018. "Continuity and Convexity of a Nonlinear Scalarizing Function in Set Optimization Problems with Applications," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 679-695, June.
    3. Gabriele Eichfelder & Maria Pilecka, 2016. "Set Approach for Set Optimization with Variable Ordering Structures Part I: Set Relations and Relationship to Vector Approach," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 931-946, December.
    4. Khushboo & C. S. Lalitha, 2019. "A unified minimal solution in set optimization," Journal of Global Optimization, Springer, vol. 74(1), pages 195-211, May.
    5. Qamrul Hasan Ansari & Elisabeth Köbis & Pradeep Kumar Sharma, 2019. "Characterizations of Multiobjective Robustness via Oriented Distance Function and Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 181(3), pages 817-839, June.
    6. Gabriele Eichfelder & Maria Pilecka, 2016. "Set Approach for Set Optimization with Variable Ordering Structures Part II: Scalarization Approaches," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 947-963, December.
    7. J. B. Hiriart-Urruty, 1979. "Tangent Cones, Generalized Gradients and Mathematical Programming in Banach Spaces," Mathematics of Operations Research, INFORMS, vol. 4(1), pages 79-97, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qamrul Hasan Ansari & Pradeep Kumar Sharma, 2022. "Some Properties of Generalized Oriented Distance Function and their Applications to Set Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 247-279, June.
    2. Ovidiu Bagdasar & Nicolae Popovici, 2018. "Unifying local–global type properties in vector optimization," Journal of Global Optimization, Springer, vol. 72(2), pages 155-179, October.
    3. L. Huerga & B. Jiménez & V. Novo & A. Vílchez, 2021. "Six set scalarizations based on the oriented distance: continuity, convexity and application to convex set optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(2), pages 413-436, April.
    4. Gabriele Eichfelder & Maria Pilecka, 2016. "Set Approach for Set Optimization with Variable Ordering Structures Part II: Scalarization Approaches," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 947-963, December.
    5. Yang-Dong Xu & Cheng-Ling Zhou & Sheng-Kun Zhu, 2021. "Image Space Analysis for Set Optimization Problems with Applications," Journal of Optimization Theory and Applications, Springer, vol. 191(1), pages 311-343, October.
    6. Gabriele Eichfelder & Maria Pilecka, 2016. "Set Approach for Set Optimization with Variable Ordering Structures Part I: Set Relations and Relationship to Vector Approach," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 931-946, December.
    7. Elisa Caprari & Lorenzo Cerboni Baiardi & Elena Molho, 2022. "Scalarization and robustness in uncertain vector optimization problems: a non componentwise approach," Journal of Global Optimization, Springer, vol. 84(2), pages 295-320, October.
    8. Wang Chen & Xinmin Yang & Yong Zhao, 2023. "Conditional gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 85(3), pages 857-896, July.
    9. Chuang-Liang Zhang & Nan-jing Huang, 2021. "Set Relations and Weak Minimal Solutions for Nonconvex Set Optimization Problems with Applications," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 894-914, September.
    10. Marius Durea & Radu Strugariu & Christiane Tammer, 2013. "Scalarization in Geometric and Functional Vector Optimization Revisited," Journal of Optimization Theory and Applications, Springer, vol. 159(3), pages 635-655, December.
    11. Bolte, Jérôme & Le, Tam & Pauwels, Edouard & Silveti-Falls, Antonio, 2022. "Nonsmooth Implicit Differentiation for Machine Learning and Optimization," TSE Working Papers 22-1314, Toulouse School of Economics (TSE).
    12. Khushboo & C. S. Lalitha, 2018. "Scalarizations for a unified vector optimization problem based on order representing and order preserving properties," Journal of Global Optimization, Springer, vol. 70(4), pages 903-916, April.
    13. Ginchev Ivan & Guerraggio Angelo & Rocca Matteo, 2003. "First-Order Conditions for C0,1 Constrained vector optimization," Economics and Quantitative Methods qf0307, Department of Economics, University of Insubria.
    14. Hong-Zhi Wei & Chun-Rong Chen & Sheng-Jie Li, 2020. "Robustness Characterizations for Uncertain Optimization Problems via Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 459-479, August.
    15. S. K. Zhu & S. J. Li, 2014. "Unified Duality Theory for Constrained Extremum Problems. Part II: Special Duality Schemes," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 763-782, June.
    16. Rocca Matteo & Papalia Melania, 2008. "Well-posedness in vector optimization and scalarization results," Economics and Quantitative Methods qf0807, Department of Economics, University of Insubria.
    17. Kuntal Som & V. Vetrivel, 2023. "Global well-posedness of set-valued optimization with application to uncertain problems," Journal of Global Optimization, Springer, vol. 85(2), pages 511-539, February.
    18. S. J. Li & Y. D. Xu & S. K. Zhu, 2012. "Nonlinear Separation Approach to Constrained Extremum Problems," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 842-856, September.
    19. Giovanni Paolo Crespi & Andreas H. Hamel & Matteo Rocca & Carola Schrage, 2021. "Set Relations via Families of Scalar Functions and Approximate Solutions in Set Optimization," Mathematics of Operations Research, INFORMS, vol. 46(1), pages 361-381, February.
    20. Giorgio Giorgi, 2021. "On Notations for Conic Hulls and Related Considerations on Tangent Cones," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 13(3), pages 1-13, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:85:y:2023:i:1:d:10.1007_s10898-022-01203-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.