IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v175y2017i3d10.1007_s10957-016-1059-y.html
   My bibliography  Save this article

On Some Methods to Derive Necessary and Sufficient Optimality Conditions in Vector Optimization

Author

Listed:
  • Marius Durea

    (“Al. I. Cuza” University)

  • Radu Strugariu

    (“Gh. Asachi” Technical University)

  • Christiane Tammer

    (Martin-Luther-Universität Halle-Wittenberg)

Abstract

The aim of this paper is to address new approaches, in separate ways, to necessary and, respectively, sufficient optimality conditions in constrained vector optimization. In this respect, for the necessary optimality conditions that we derive, we use a kind of vectorial penalization technique, while for the sufficient optimality conditions we make use of an appropriate scalarization method. In both cases, the approaches couple a basic technique (of penalization or scalarization, respectively) with several results in variational analysis and optimization obtained by the authors in the last years. These combinations allow us to arrive to optimality conditions which are, in terms of assumptions made, new.

Suggested Citation

  • Marius Durea & Radu Strugariu & Christiane Tammer, 2017. "On Some Methods to Derive Necessary and Sufficient Optimality Conditions in Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 175(3), pages 738-763, December.
  • Handle: RePEc:spr:joptap:v:175:y:2017:i:3:d:10.1007_s10957-016-1059-y
    DOI: 10.1007/s10957-016-1059-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-016-1059-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-016-1059-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christian Günther & Christiane Tammer, 2016. "Relationships between constrained and unconstrained multi-objective optimization and application in location theory," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(2), pages 359-387, October.
    2. Jean-Paul Penot, 1998. "Cooperative behavior of functions, relations and sets," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 48(2), pages 229-246, November.
    3. M. Durea, 2010. "Remarks on strict efficiency in scalar and vector optimization," Journal of Global Optimization, Springer, vol. 47(1), pages 13-27, May.
    4. Marius Durea & Radu Strugariu & Christiane Tammer, 2015. "On set-valued optimization problems with variable ordering structure," Journal of Global Optimization, Springer, vol. 61(4), pages 745-767, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elena-Andreea Florea, 2018. "Vector Optimization Problems with Generalized Functional Constraints in Variable Ordering Structure Setting," Journal of Optimization Theory and Applications, Springer, vol. 178(1), pages 94-118, July.
    2. Ovidiu Bagdasar & Nicolae Popovici, 2018. "Unifying local–global type properties in vector optimization," Journal of Global Optimization, Springer, vol. 72(2), pages 155-179, October.
    3. Gabriele Eichfelder & Kathrin Klamroth & Julia Niebling, 2021. "Nonconvex constrained optimization by a filtering branch and bound," Journal of Global Optimization, Springer, vol. 80(1), pages 31-61, May.
    4. Marius Durea & Radu Strugariu & Christiane Tammer, 2015. "On set-valued optimization problems with variable ordering structure," Journal of Global Optimization, Springer, vol. 61(4), pages 745-767, April.
    5. Teodor Chelmuş & Marius Durea & Elena-Andreea Florea, 2019. "Directional Pareto Efficiency: Concepts and Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 182(1), pages 336-365, July.
    6. Gabriele Eichfelder & Maria Pilecka, 2016. "Set Approach for Set Optimization with Variable Ordering Structures Part II: Scalarization Approaches," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 947-963, December.
    7. Gabriele Eichfelder & Maria Pilecka, 2016. "Set Approach for Set Optimization with Variable Ordering Structures Part I: Set Relations and Relationship to Vector Approach," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 931-946, December.
    8. Bettina Zargini, 2022. "Multiobjective Location Problems with Variable Domination Structures and an Application to Select a New Hub Airport," Logistics, MDPI, vol. 6(2), pages 1-13, March.
    9. Jiawei Chen & Elisabeth Köbis & Markus Köbis & Jen-Chih Yao, 2018. "Image Space Analysis for Constrained Inverse Vector Variational Inequalities via Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 816-834, June.
    10. Marius Durea & Radu Strugariu, 2017. "Vectorial penalization for generalized functional constrained problems," Journal of Global Optimization, Springer, vol. 68(4), pages 899-923, August.
    11. Truong Q. Bao & Lidia Huerga & Bienvenido Jiménez & Vicente Novo, 2020. "Necessary Conditions for Nondominated Solutions in Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 826-842, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:175:y:2017:i:3:d:10.1007_s10957-016-1059-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.