IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v59y2014i3p435-473.html
   My bibliography  Save this article

Global and local convergence of a nonmonotone SQP method for constrained nonlinear optimization

Author

Listed:
  • Chungen Shen
  • Lei-Hong Zhang
  • Bo Wang
  • Wenqiong Shao

Abstract

In this paper, we propose a robust sequential quadratic programming (SQP) method for nonlinear programming without using any explicit penalty function and filter. The method embeds the modified QP subproblem proposed by Burke and Han (Math Program 43:277–303, 1989 ) for the search direction, which overcomes the common difficulty in the traditional SQP methods, namely the inconsistency of the quadratic programming subproblems. A non-monotonic technique is employed further in a framework in which the trial point is accepted whenever there is a sufficient relaxed reduction of the objective function or the constraint violation function. A forcing sequence possibly tending to zero is introduced to control the constraint violation dynamically, which is able to prevent the constraint violation from over-relaxing and plays a crucial role in global convergence and the local fast convergence as well. We prove that the method converges globally without the Mangasarian–Fromovitz constraint qualification (MFCQ). In particular, we show that any feasible limit point that satisfies the relaxed constant positive linear dependence constraint qualification is also a Karush–Kuhn–Tucker point. Under the strict MFCQ and the second order sufficient condition, furthermore, we establish the superlinear convergence. Preliminary numerical results show the efficiency of our method. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Chungen Shen & Lei-Hong Zhang & Bo Wang & Wenqiong Shao, 2014. "Global and local convergence of a nonmonotone SQP method for constrained nonlinear optimization," Computational Optimization and Applications, Springer, vol. 59(3), pages 435-473, December.
  • Handle: RePEc:spr:coopap:v:59:y:2014:i:3:p:435-473
    DOI: 10.1007/s10589-014-9675-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-014-9675-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-014-9675-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chungen Shen & Sven Leyffer & Roger Fletcher, 2012. "A nonmonotone filter method for nonlinear optimization," Computational Optimization and Applications, Springer, vol. 52(3), pages 583-607, July.
    2. Joseph Frédéric Bonnans & Alexander Ioffe, 1995. "Second-order Sufficiency and Quadratic Growth for Nonisolated Minima," Mathematics of Operations Research, INFORMS, vol. 20(4), pages 801-817, November.
    3. R. Andreani & J. M. Martinez & M. L. Schuverdt, 2005. "On the Relation between Constant Positive Linear Dependence Condition and Quasinormality Constraint Qualification," Journal of Optimization Theory and Applications, Springer, vol. 125(2), pages 473-483, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chungen Shen & Lei-Hong Zhang & Wei Liu, 2016. "A stabilized filter SQP algorithm for nonlinear programming," Journal of Global Optimization, Springer, vol. 65(4), pages 677-708, August.
    2. Giorgio, 2019. "On Second-Order Optimality Conditions in Smooth Nonlinear Programming Problems," DEM Working Papers Series 171, University of Pavia, Department of Economics and Management.
    3. L. F. Bueno & G. Haeser & J. M. Martínez, 2015. "A Flexible Inexact-Restoration Method for Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 188-208, April.
    4. Kuang Bai & Yixia Song & Jin Zhang, 2023. "Second-Order Enhanced Optimality Conditions and Constraint Qualifications," Journal of Optimization Theory and Applications, Springer, vol. 198(3), pages 1264-1284, September.
    5. M. Fernanda P. Costa & Ana Maria A. C. Rocha & Edite M. G. P. Fernandes, 2018. "Filter-based DIRECT method for constrained global optimization," Journal of Global Optimization, Springer, vol. 71(3), pages 517-536, July.
    6. Zhongwen Chen & Yu-Hong Dai & Jiangyan Liu, 2020. "A penalty-free method with superlinear convergence for equality constrained optimization," Computational Optimization and Applications, Springer, vol. 76(3), pages 801-833, July.
    7. Pei, Yonggang & Zhu, Detong, 2016. "Local convergence of a trust-region algorithm with line search filter technique for nonlinear constrained optimization," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 797-808.
    8. Leonid Minchenko, 2019. "Note on Mangasarian–Fromovitz-Like Constraint Qualifications," Journal of Optimization Theory and Applications, Springer, vol. 182(3), pages 1199-1204, September.
    9. L. Minchenko & A. Tarakanov, 2011. "On Error Bounds for Quasinormal Programs," Journal of Optimization Theory and Applications, Springer, vol. 148(3), pages 571-579, March.
    10. Nguyen Huy Chieu & Gue Myung Lee, 2014. "Constraint Qualifications for Mathematical Programs with Equilibrium Constraints and their Local Preservation Property," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 755-776, December.
    11. Shuai Liu, 2019. "A simple version of bundle method with linear programming," Computational Optimization and Applications, Springer, vol. 72(2), pages 391-412, March.
    12. Giorgio Giorgi & Bienvenido Jiménez & Vicente Novo, 2016. "Approximate Karush–Kuhn–Tucker Condition in Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 70-89, October.
    13. X. Q. Yang & Y. Y. Zhou, 2010. "Second-Order Analysis of Penalty Function," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 445-461, August.
    14. Lei Guo & Gui-Hua Lin & Jane J. Ye, 2013. "Second-Order Optimality Conditions for Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 33-64, July.
    15. E. Birgin & J. Martínez & L. Prudente, 2015. "Optimality properties of an Augmented Lagrangian method on infeasible problems," Computational Optimization and Applications, Springer, vol. 60(3), pages 609-631, April.
    16. Andrea Cristofari & Gianni Di Pillo & Giampaolo Liuzzi & Stefano Lucidi, 2022. "An Augmented Lagrangian Method Exploiting an Active-Set Strategy and Second-Order Information," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 300-323, June.
    17. Giorgio Giorgi, 2018. "A Guided Tour in Constraint Qualifications for Nonlinear Programming under Differentiability Assumptions," DEM Working Papers Series 160, University of Pavia, Department of Economics and Management.
    18. Ana Rocha & M. Costa & Edite Fernandes, 2014. "A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues," Journal of Global Optimization, Springer, vol. 60(2), pages 239-263, October.
    19. L. F. Bueno & G. Haeser & F. Lara & F. N. Rojas, 2020. "An Augmented Lagrangian method for quasi-equilibrium problems," Computational Optimization and Applications, Springer, vol. 76(3), pages 737-766, July.
    20. Jane J. Ye & Jin Zhang, 2014. "Enhanced Karush–Kuhn–Tucker Conditions for Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 777-794, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:59:y:2014:i:3:p:435-473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.