IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v169y2016i2d10.1007_s10957-014-0611-x.html
   My bibliography  Save this article

An Adaptive Approach to Adjust Constraint Bounds and its Application in Structural Topology Optimization

Author

Listed:
  • G. L. Yi

    (Beijing University of Technology)

  • Y. K. Sui

    (Beijing University of Technology)

Abstract

Two difficult situations often occur in the final results of engineering design optimization problems, i.e., final results yielding (1) violated constraints, or (2) no active constraints. In order to avoid these situations, this paper proposes an adaptive approach of dynamically adjusting constraint bounds to address constraint satisfaction issues. Based on the ratio of the true value of the constraint obtained by the analytical formula or finite element analysis, to the corresponding constraint bound used in the current iteration, a new constraint bound is computed and updated automatically for next iteration. By means of controlling the iterative process, this approach is able to make all constraints satisfied at the optimum point. It is implemented successfully and robustly into structural topology optimization problems with a displacement constraint.

Suggested Citation

  • G. L. Yi & Y. K. Sui, 2016. "An Adaptive Approach to Adjust Constraint Bounds and its Application in Structural Topology Optimization," Journal of Optimization Theory and Applications, Springer, vol. 169(2), pages 656-670, May.
  • Handle: RePEc:spr:joptap:v:169:y:2016:i:2:d:10.1007_s10957-014-0611-x
    DOI: 10.1007/s10957-014-0611-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-014-0611-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-014-0611-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gabriel Haeser & María Laura Schuverdt, 2011. "On Approximate KKT Condition and its Extension to Continuous Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 149(3), pages 528-539, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinxing Tong & Wenjie Ge & Xinqin Gao & Yan Li, 2019. "Optimization of Combining Fiber Orientation and Topology for Constant-Stiffness Composite Laminated Plates," Journal of Optimization Theory and Applications, Springer, vol. 181(2), pages 653-670, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Andreani & José Mario Martínez & Alberto Ramos & Paulo J. S. Silva, 2018. "Strict Constraint Qualifications and Sequential Optimality Conditions for Constrained Optimization," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 693-717, August.
    2. Giorgio Giorgi & Bienvenido Jiménez & Vicente Novo, 2014. "Some Notes on Approximate Optimality Conditions in Scalar and Vector Optimization Problems," DEM Working Papers Series 095, University of Pavia, Department of Economics and Management.
    3. Giorgio Giorgi & Bienvenido Jiménez & Vicente Novo, 2016. "Approximate Karush–Kuhn–Tucker Condition in Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 70-89, October.
    4. Min Feng & Shengjie Li, 2018. "An approximate strong KKT condition for multiobjective optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 489-509, October.
    5. M. D. Sánchez & M. L. Schuverdt, 2019. "A second-order convergence augmented Lagrangian method using non-quadratic penalty functions," OPSEARCH, Springer;Operational Research Society of India, vol. 56(2), pages 390-408, June.
    6. R. Andreani & E. H. Fukuda & G. Haeser & D. O. Santos & L. D. Secchin, 2021. "On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming," Computational Optimization and Applications, Springer, vol. 79(3), pages 633-648, July.
    7. Roberto Andreani & Ellen H. Fukuda & Gabriel Haeser & Daiana O. Santos & Leonardo D. Secchin, 2024. "Optimality Conditions for Nonlinear Second-Order Cone Programming and Symmetric Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 1-33, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:169:y:2016:i:2:d:10.1007_s10957-014-0611-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.