IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v386y2020ics009630032030477x.html
   My bibliography  Save this article

A test on the location of the tangency portfolio on the set of feasible portfolios

Author

Listed:
  • Muhinyuza, Stanislas
  • Bodnar, Taras
  • Lindholm, Mathias

Abstract

Due to the problem of parameter uncertainty, specifying the location of the tangency portfolio (TP) on the set of feasible portfolios becomes a challenging task. The set of feasible portfolios is a parabola in the mean-variance space with optimal portfolios lying on its upper part. Using statistical test theory, we want to decide if the tangency portfolio is mean-variance efficient, i.e. if it belongs to the upper limb of the efficient frontier. In the opposite case, the investor would prefer to invest into the risk-free asset or into the global minimum variance portfolio which lies in the vertex of the set of feasible portfolios. Assuming that the portfolio asset returns are independent and multivariate normally distributed, we suggest a test on the location of the tangency portfolio on the set of feasible portfolios. The distribution of the test statistic is derived under both hypotheses, which we use to assess the power of the test and construct a confidence interval. Moreover, out-of-sample performance of the test is evaluated based on real data. The robustness to the assumption of normality is investigated via an extensive simulation study where we show that the new test is robust to the violation of the normality assumption and can also be used for heavy-tailed stochastic models. Moreover, in an empirical study we apply the developed theory to real data. We find that when the sample size is relatively large and a stable period is present on the market, then the mean-variance efficiency of the tangency portfolio can be statistically justified.

Suggested Citation

  • Muhinyuza, Stanislas & Bodnar, Taras & Lindholm, Mathias, 2020. "A test on the location of the tangency portfolio on the set of feasible portfolios," Applied Mathematics and Computation, Elsevier, vol. 386(C).
  • Handle: RePEc:eee:apmaco:v:386:y:2020:i:c:s009630032030477x
    DOI: 10.1016/j.amc.2020.125519
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630032030477X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125519?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    2. Best, Michael J & Grauer, Robert R, 1991. "On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results," The Review of Financial Studies, Society for Financial Studies, vol. 4(2), pages 315-342.
    3. Konstantin Glombek, 2014. "Statistical Inference for High-Dimensional Global Minimum Variance Portfolios," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 845-865, December.
    4. Huang, Xiaoxia & Di, Hao, 2016. "Uncertain portfolio selection with background risk," Applied Mathematics and Computation, Elsevier, vol. 276(C), pages 284-296.
    5. Okhrin, Yarema & Schmid, Wolfgang, 2006. "Distributional properties of portfolio weights," Journal of Econometrics, Elsevier, vol. 134(1), pages 235-256, September.
    6. David Ardia & Guido Bolliger & Kris Boudt & Jean-Philippe Gagnon-Fleury, 2017. "The impact of covariance misspecification in risk-based portfolios," Annals of Operations Research, Springer, vol. 254(1), pages 1-16, July.
    7. Bodnar, Taras & Mazur, Stepan & Okhrin, Yarema, 2017. "Bayesian estimation of the global minimum variance portfolio," European Journal of Operational Research, Elsevier, vol. 256(1), pages 292-307.
    8. Wolfgang Schmid & Taras Zabolotskyy, 2008. "On the existence of unbiased estimators for the portfolio weights obtained by maximizing the Sharpe ratio," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(1), pages 29-34, February.
    9. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2018. "Estimation of the global minimum variance portfolio in high dimensions," European Journal of Operational Research, Elsevier, vol. 266(1), pages 371-390.
    10. Arjun K. Gupta & Daya K. Nagar, 2000. "Matrix-variate beta distribution," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 24, pages 1-11, January.
    11. Mark Britten‐Jones, 1999. "The Sampling Error in Estimates of Mean‐Variance Efficient Portfolio Weights," Journal of Finance, American Finance Association, vol. 54(2), pages 655-671, April.
    12. Taras Bodnar & Taras Zabolotskyy, 2017. "How risky is the optimal portfolio which maximizes the Sharpe ratio?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(1), pages 1-28, January.
    13. Meucci, A. & Nicolosi, M., 2016. "Dynamic portfolio management with views at multiple horizons," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 495-518.
    14. Merton, Robert C., 1972. "An Analytic Derivation of the Efficient Portfolio Frontier," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 7(4), pages 1851-1872, September.
    15. Bodnar, Taras & Okhrin, Yarema, 2008. "Properties of the singular, inverse and generalized inverse partitioned Wishart distributions," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2389-2405, November.
    16. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
    17. Taras Bodnar & Wolfgang Schmid, 2009. "Econometrical analysis of the sample efficient frontier," The European Journal of Finance, Taylor & Francis Journals, vol. 15(3), pages 317-335.
    18. Gabriel Frahm, 2010. "Linear statistical inference for global and local minimum variance portfolios," Statistical Papers, Springer, vol. 51(4), pages 789-812, December.
    19. Prayut Jain & Shashi Jain, 2019. "Can Machine Learning-Based Portfolios Outperform Traditional Risk-Based Portfolios? The Need to Account for Covariance Misspecification," Risks, MDPI, vol. 7(3), pages 1-27, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Chou-Wen & Liu, Kai & Li, Bin & Tan, Ken Seng, 2022. "Portfolio optimization under multivariate affine generalized hyperbolic distributions," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 49-66.
    2. Ali, Fahad & Jiang, Yuexiang & Sensoy, Ahmet, 2021. "Downside risk in Dow Jones Islamic equity indices: Precious metals and portfolio diversification before and after the COVID-19 bear market," Research in International Business and Finance, Elsevier, vol. 58(C).
    3. Javed, Farrukh & Mazur, Stepan & Thorsén, Erik, 2021. "Tangency portfolio weights under a skew-normal model in small and large dimensions," Working Papers 2021:13, Örebro University, School of Business.
    4. Bodnar, Taras & Lindholm, Mathias & Niklasson, Vilhelm & Thorsén, Erik, 2022. "Bayesian portfolio selection using VaR and CVaR," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    5. Farrukh Javed & Stepan Mazur & Erik Thorsén, 2024. "Tangency portfolio weights under a skew-normal model in small and large dimensions," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 75(7), pages 1395-1406, July.
    6. Ali, Fahad & Khurram, Muhammad Usman & Sensoy, Ahmet & Vo, Xuan Vinh, 2024. "Green cryptocurrencies and portfolio diversification in the era of greener paths," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    7. Drin, Svitlana & Mazur, Stepan & Muhinyuza, Stanislas, 2023. "A test on the location of tangency portfolio for small sample size and singular covariance matrix," Working Papers 2023:11, Örebro University, School of Business.
    8. Taras Bodnar & Dmytro Ivasiuk & Nestor Parolya & Wolfgang Schmid, 2023. "Multi-period power utility optimization under stock return predictability," Computational Management Science, Springer, vol. 20(1), pages 1-27, December.
    9. Alfelt, Gustav & Mazur, Stepan, 2020. "On the mean and variance of the estimated tangency portfolio weights for small samples," Working Papers 2020:8, Örebro University, School of Business.
    10. Karlsson, Sune & Mazur, Stepan & Muhinyuza, Stanislas, 2020. "Statistical Inference for the Tangency Portfolio in High Dimension," Working Papers 2020:10, Örebro University, School of Business.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bodnar, Taras & Parolya, Nestor & Thorsén, Erik, 2023. "Is the empirical out-of-sample variance an informative risk measure for the high-dimensional portfolios?," Finance Research Letters, Elsevier, vol. 54(C).
    2. Bodnar Taras & Schmid Wolfgang, 2011. "On the exact distribution of the estimated expected utility portfolio weights: Theory and applications," Statistics & Risk Modeling, De Gruyter, vol. 28(4), pages 319-342, December.
    3. Taras Bodnar & Holger Dette & Nestor Parolya & Erik Thors'en, 2019. "Sampling Distributions of Optimal Portfolio Weights and Characteristics in Low and Large Dimensions," Papers 1908.04243, arXiv.org, revised Apr 2023.
    4. Bodnar, Taras & Lindholm, Mathias & Niklasson, Vilhelm & Thorsén, Erik, 2022. "Bayesian portfolio selection using VaR and CVaR," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    5. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    6. David Bauder & Taras Bodnar & Nestor Parolya & Wolfgang Schmid, 2021. "Bayesian mean–variance analysis: optimal portfolio selection under parameter uncertainty," Quantitative Finance, Taylor & Francis Journals, vol. 21(2), pages 221-242, February.
    7. Taras Bodnar & Mathias Lindholm & Erik Thorsén & Joanna Tyrcha, 2021. "Quantile-based optimal portfolio selection," Computational Management Science, Springer, vol. 18(3), pages 299-324, July.
    8. Mårten Gulliksson & Stepan Mazur, 2020. "An Iterative Approach to Ill-Conditioned Optimal Portfolio Selection," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 773-794, December.
    9. Taras Bodnar, 2009. "An exact test on structural changes in the weights of the global minimum variance portfolio," Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 363-370.
    10. Chavez-Bedoya, Luis & Rosales, Francisco, 2022. "Orthogonal portfolios to assess estimation risk," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 906-937.
    11. Taras Bodnar & Yarema Okhrin & Nestor Parolya, 2022. "Optimal Shrinkage-Based Portfolio Selection in High Dimensions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(1), pages 140-156, December.
    12. Taras Bodnar & Stepan Mazur & Krzysztof Podgórski, 2017. "A test for the global minimum variance portfolio for small sample and singular covariance," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(3), pages 253-265, July.
    13. Simaan, Majeed & Simaan, Yusif & Tang, Yi, 2018. "Estimation error in mean returns and the mean-variance efficient frontier," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 109-124.
    14. Thomas Holgersson & Peter Karlsson & Andreas Stephan, 2020. "A risk perspective of estimating portfolio weights of the global minimum-variance portfolio," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(1), pages 59-80, March.
    15. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    16. Bodnar, Olha & Bodnar, Taras & Parolya, Nestor, 2022. "Recent advances in shrinkage-based high-dimensional inference," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    17. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2013. "On the equivalence of quadratic optimization problems commonly used in portfolio theory," European Journal of Operational Research, Elsevier, vol. 229(3), pages 637-644.
    18. Bauder, David & Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2020. "Bayesian inference of the multi-period optimal portfolio for an exponential utility," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    19. Taras Bodnar & Mathias Lindholm & Vilhelm Niklasson & Erik Thors'en, 2020. "Bayesian Quantile-Based Portfolio Selection," Papers 2012.01819, arXiv.org.
    20. Begoña Font, 2016. "Bootstrap estimation of the efficient frontier," Computational Management Science, Springer, vol. 13(4), pages 541-570, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:386:y:2020:i:c:s009630032030477x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.