IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v162y2014i3d10.1007_s10957-013-0492-4.html
   My bibliography  Save this article

Primal-Dual Relationship Between Levenberg–Marquardt and Central Trajectories for Linearly Constrained Convex Optimization

Author

Listed:
  • Roger Behling

    (Católica SC)

  • Clovis Gonzaga

    (Federal University of Santa Catarina)

  • Gabriel Haeser

    (Federal University of São Paulo)

Abstract

We consider the minimization of a convex function on a bounded polyhedron (polytope) represented by linear equality constraints and non-negative variables. We define the Levenberg–Marquardt and central trajectories starting at the analytic center using the same parameter, and show that they satisfy a primal-dual relationship, being close to each other for large values of the parameter. Based on this, we develop an algorithm that starts computing primal-dual feasible points on the Levenberg–Marquardt trajectory and eventually moves to the central path. Our main theorem is particularly relevant in quadratic programming, where points on the primal-dual Levenberg–Marquardt trajectory can be calculated by means of a system of linear equations. We present some computational tests related to box constrained trust region subproblems.

Suggested Citation

  • Roger Behling & Clovis Gonzaga & Gabriel Haeser, 2014. "Primal-Dual Relationship Between Levenberg–Marquardt and Central Trajectories for Linearly Constrained Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 162(3), pages 705-717, September.
  • Handle: RePEc:spr:joptap:v:162:y:2014:i:3:d:10.1007_s10957-013-0492-4
    DOI: 10.1007/s10957-013-0492-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-013-0492-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-013-0492-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. D. Gonzalez-Lima & C. Roos, 2005. "On Central-Path Proximity Measures in Interior-Point Methods," Journal of Optimization Theory and Applications, Springer, vol. 127(2), pages 303-328, November.
    2. Gondzio, Jacek, 2012. "Interior point methods 25 years later," European Journal of Operational Research, Elsevier, vol. 218(3), pages 587-601.
    3. L. M. Graña Drummond & B. F. Svaiter, 1999. "On Well Definedness of the Central Path," Journal of Optimization Theory and Applications, Springer, vol. 102(2), pages 223-237, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baha Alzalg, 2019. "A primal-dual interior-point method based on various selections of displacement step for symmetric optimization," Computational Optimization and Applications, Springer, vol. 72(2), pages 363-390, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Castro, Jordi & Escudero, Laureano F. & Monge, Juan F., 2023. "On solving large-scale multistage stochastic optimization problems with a new specialized interior-point approach," European Journal of Operational Research, Elsevier, vol. 310(1), pages 268-285.
    2. Luciana Casacio & Aurelio R. L. Oliveira & Christiano Lyra, 2018. "Using groups in the splitting preconditioner computation for interior point methods," 4OR, Springer, vol. 16(4), pages 401-410, December.
    3. Stefano Cipolla & Jacek Gondzio, 2023. "Proximal Stabilized Interior Point Methods and Low-Frequency-Update Preconditioning Techniques," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 1061-1103, June.
    4. Bittencourt, Tiberio & Ferreira, Orizon Pereira, 2015. "Local convergence analysis of Inexact Newton method with relative residual error tolerance under majorant condition in Riemannian manifolds," Applied Mathematics and Computation, Elsevier, vol. 261(C), pages 28-38.
    5. Fatemeh Marzbani & Akmal Abdelfatah, 2024. "Economic Dispatch Optimization Strategies and Problem Formulation: A Comprehensive Review," Energies, MDPI, vol. 17(3), pages 1-31, January.
    6. María J. Cánovas & Marco A. López & Juan Parra & F. Javier Toledo, 2006. "Lipschitz Continuity of the Optimal Value via Bounds on the Optimal Set in Linear Semi-Infinite Optimization," Mathematics of Operations Research, INFORMS, vol. 31(3), pages 478-489, August.
    7. Pedro Borges & Claudia Sagastizábal & Mikhail Solodov, 2021. "Decomposition Algorithms for Some Deterministic and Two-Stage Stochastic Single-Leader Multi-Follower Games," Computational Optimization and Applications, Springer, vol. 78(3), pages 675-704, April.
    8. Stefania Bellavia & Valentina De Simone & Daniela di Serafino & Benedetta Morini, 2016. "On the update of constraint preconditioners for regularized KKT systems," Computational Optimization and Applications, Springer, vol. 65(2), pages 339-360, November.
    9. Yu, Jianxi & Liu, Pei & Li, Zheng, 2021. "Data reconciliation of the thermal system of a double reheat power plant for thermal calculation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    10. de Groot, Oliver & Mazelis, Falk & Motto, Roberto & Ristiniemi, Annukka, 2021. "A toolkit for computing Constrained Optimal Policy Projections (COPPs)," Working Paper Series 2555, European Central Bank.
    11. M. Paul Laiu & André L. Tits, 2019. "A constraint-reduced MPC algorithm for convex quadratic programming, with a modified active set identification scheme," Computational Optimization and Applications, Springer, vol. 72(3), pages 727-768, April.
    12. Martijn H. H. Schoot Uiterkamp & Marco E. T. Gerards & Johann L. Hurink, 2022. "On a Reduction for a Class of Resource Allocation Problems," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1387-1402, May.
    13. Cecilia Orellana Castro & Manolo Rodriguez Heredia & Aurelio R. L. Oliveira, 2023. "Recycling basic columns of the splitting preconditioner in interior point methods," Computational Optimization and Applications, Springer, vol. 86(1), pages 49-78, September.
    14. repec:hal:wpaper:hal-03715954 is not listed on IDEAS
    15. Enrico Bettiol & Lucas Létocart & Francesco Rinaldi & Emiliano Traversi, 2020. "A conjugate direction based simplicial decomposition framework for solving a specific class of dense convex quadratic programs," Computational Optimization and Applications, Springer, vol. 75(2), pages 321-360, March.
    16. Manolo Rodriguez Heredia & Aurelio Ribeiro Leite Oliveira, 2020. "A new proposal to improve the early iterations in the interior point method," Annals of Operations Research, Springer, vol. 287(1), pages 185-208, April.
    17. Dominik Garmatter & Margherita Porcelli & Francesco Rinaldi & Martin Stoll, 2023. "An improved penalty algorithm using model order reduction for MIPDECO problems with partial observations," Computational Optimization and Applications, Springer, vol. 84(1), pages 191-223, January.
    18. Fabio Vitor & Todd Easton, 2018. "The double pivot simplex method," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(1), pages 109-137, February.
    19. Gondzio, Jacek, 2016. "Crash start of interior point methods," European Journal of Operational Research, Elsevier, vol. 255(1), pages 308-314.
    20. Coralia Cartis & Yiming Yan, 2016. "Active-set prediction for interior point methods using controlled perturbations," Computational Optimization and Applications, Springer, vol. 63(3), pages 639-684, April.
    21. Belli, Edoardo, 2022. "Smoothly adaptively centered ridge estimator," Journal of Multivariate Analysis, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:162:y:2014:i:3:d:10.1007_s10957-013-0492-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.