IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v162y2014i3d10.1007_s10957-013-0492-4.html
   My bibliography  Save this article

Primal-Dual Relationship Between Levenberg–Marquardt and Central Trajectories for Linearly Constrained Convex Optimization

Author

Listed:
  • Roger Behling

    (Católica SC)

  • Clovis Gonzaga

    (Federal University of Santa Catarina)

  • Gabriel Haeser

    (Federal University of São Paulo)

Abstract

We consider the minimization of a convex function on a bounded polyhedron (polytope) represented by linear equality constraints and non-negative variables. We define the Levenberg–Marquardt and central trajectories starting at the analytic center using the same parameter, and show that they satisfy a primal-dual relationship, being close to each other for large values of the parameter. Based on this, we develop an algorithm that starts computing primal-dual feasible points on the Levenberg–Marquardt trajectory and eventually moves to the central path. Our main theorem is particularly relevant in quadratic programming, where points on the primal-dual Levenberg–Marquardt trajectory can be calculated by means of a system of linear equations. We present some computational tests related to box constrained trust region subproblems.

Suggested Citation

  • Roger Behling & Clovis Gonzaga & Gabriel Haeser, 2014. "Primal-Dual Relationship Between Levenberg–Marquardt and Central Trajectories for Linearly Constrained Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 162(3), pages 705-717, September.
  • Handle: RePEc:spr:joptap:v:162:y:2014:i:3:d:10.1007_s10957-013-0492-4
    DOI: 10.1007/s10957-013-0492-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-013-0492-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-013-0492-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. D. Gonzalez-Lima & C. Roos, 2005. "On Central-Path Proximity Measures in Interior-Point Methods," Journal of Optimization Theory and Applications, Springer, vol. 127(2), pages 303-328, November.
    2. Gondzio, Jacek, 2012. "Interior point methods 25 years later," European Journal of Operational Research, Elsevier, vol. 218(3), pages 587-601.
    3. L. M. Graña Drummond & B. F. Svaiter, 1999. "On Well Definedness of the Central Path," Journal of Optimization Theory and Applications, Springer, vol. 102(2), pages 223-237, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baha Alzalg, 2019. "A primal-dual interior-point method based on various selections of displacement step for symmetric optimization," Computational Optimization and Applications, Springer, vol. 72(2), pages 363-390, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luciana Casacio & Aurelio R. L. Oliveira & Christiano Lyra, 2018. "Using groups in the splitting preconditioner computation for interior point methods," 4OR, Springer, vol. 16(4), pages 401-410, December.
    2. Bittencourt, Tiberio & Ferreira, Orizon Pereira, 2015. "Local convergence analysis of Inexact Newton method with relative residual error tolerance under majorant condition in Riemannian manifolds," Applied Mathematics and Computation, Elsevier, vol. 261(C), pages 28-38.
    3. Stefania Bellavia & Valentina De Simone & Daniela di Serafino & Benedetta Morini, 2016. "On the update of constraint preconditioners for regularized KKT systems," Computational Optimization and Applications, Springer, vol. 65(2), pages 339-360, November.
    4. de Groot, Oliver & Mazelis, Falk & Motto, Roberto & Ristiniemi, Annukka, 2021. "A toolkit for computing Constrained Optimal Policy Projections (COPPs)," Working Paper Series 2555, European Central Bank.
    5. Martijn H. H. Schoot Uiterkamp & Marco E. T. Gerards & Johann L. Hurink, 2022. "On a Reduction for a Class of Resource Allocation Problems," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1387-1402, May.
    6. Michaël Allouche & Emmanuel Gobet & Clara Lage & Edwin Mangin, 2024. "Structured dictionary learning of rating migration matrices for credit risk modeling," Computational Statistics, Springer, vol. 39(6), pages 3431-3456, September.
    7. repec:hal:wpaper:hal-03715954 is not listed on IDEAS
    8. Enrico Bettiol & Lucas Létocart & Francesco Rinaldi & Emiliano Traversi, 2020. "A conjugate direction based simplicial decomposition framework for solving a specific class of dense convex quadratic programs," Computational Optimization and Applications, Springer, vol. 75(2), pages 321-360, March.
    9. Dominik Garmatter & Margherita Porcelli & Francesco Rinaldi & Martin Stoll, 2023. "An improved penalty algorithm using model order reduction for MIPDECO problems with partial observations," Computational Optimization and Applications, Springer, vol. 84(1), pages 191-223, January.
    10. Fabio Vitor & Todd Easton, 2018. "The double pivot simplex method," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(1), pages 109-137, February.
    11. Gondzio, Jacek, 2016. "Crash start of interior point methods," European Journal of Operational Research, Elsevier, vol. 255(1), pages 308-314.
    12. Belli, Edoardo, 2022. "Smoothly adaptively centered ridge estimator," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    13. Quoc Tran-Dinh & Anastasios Kyrillidis & Volkan Cevher, 2018. "A Single-Phase, Proximal Path-Following Framework," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1326-1347, November.
    14. Kirschner, Felix, 2023. "Conic optimization with applications in finance and approximation theory," Other publications TiSEM e9bef4a5-ee46-45be-90d7-9, Tilburg University, School of Economics and Management.
    15. Alberto Marchi, 2022. "On a primal-dual Newton proximal method for convex quadratic programs," Computational Optimization and Applications, Springer, vol. 81(2), pages 369-395, March.
    16. Eric Budish & Peter Cramton & Albert S. Kyle & Jeongmin Lee & David Malec, 2022. "Flow Trading," ECONtribute Discussion Papers Series 146, University of Bonn and University of Cologne, Germany.
      • Eric Budish & Peter Cramton & Albert S. Kyle & Jeongmin Lee & David Malec, 2023. "Flow Trading," NBER Working Papers 31098, National Bureau of Economic Research, Inc.
    17. Pedro Munari & Alfredo Moreno & Jonathan De La Vega & Douglas Alem & Jacek Gondzio & Reinaldo Morabito, 2019. "The Robust Vehicle Routing Problem with Time Windows: Compact Formulation and Branch-Price-and-Cut Method," Transportation Science, INFORMS, vol. 53(4), pages 1043-1066, July.
    18. Cipolla, S. & Gondzio, J. & Zanetti, F., 2024. "A regularized interior point method for sparse optimal transport on graphs," European Journal of Operational Research, Elsevier, vol. 319(2), pages 413-426.
    19. Elias Munapo, 2019. "The equal tendency algorithm: a new heuristic for the reliability model," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 918-924, October.
    20. J. Gondzio & F. N. C. Sobral, 2019. "Quasi-Newton approaches to interior point methods for quadratic problems," Computational Optimization and Applications, Springer, vol. 74(1), pages 93-120, September.
    21. Fabio Vitor & Todd Easton, 2022. "Projected orthogonal vectors in two-dimensional search interior point algorithms for linear programming," Computational Optimization and Applications, Springer, vol. 83(1), pages 211-246, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:162:y:2014:i:3:d:10.1007_s10957-013-0492-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.