IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v72y2019i2d10.1007_s10589-018-0045-8.html
   My bibliography  Save this article

A primal-dual interior-point method based on various selections of displacement step for symmetric optimization

Author

Listed:
  • Baha Alzalg

    (The University of Jordan
    Rochester Institute of Technology)

Abstract

In this paper, we develop a primal-dual central trajectory interior-point algorithm for symmetric programming problems and establish its complexity analysis. The main contribution of the paper is that it uniquely equips the central trajectory algorithm with various selections of the displacement step while solving symmetric programming. To show the efficiency of the proposed algorithm, these selections of calculating the displacement step are compared in numerical examples for second-order cone programming, which is a special case of symmetric programming.

Suggested Citation

  • Baha Alzalg, 2019. "A primal-dual interior-point method based on various selections of displacement step for symmetric optimization," Computational Optimization and Applications, Springer, vol. 72(2), pages 363-390, March.
  • Handle: RePEc:spr:coopap:v:72:y:2019:i:2:d:10.1007_s10589-018-0045-8
    DOI: 10.1007/s10589-018-0045-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-018-0045-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-018-0045-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baha Alzalg, 2014. "Homogeneous Self-dual Algorithms for Stochastic Second-Order Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 163(1), pages 148-164, October.
    2. Alzalg, Baha, 2015. "Volumetric barrier decomposition algorithms for stochastic quadratic second-order cone programming," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 494-508.
    3. Roger Behling & Clovis Gonzaga & Gabriel Haeser, 2014. "Primal-Dual Relationship Between Levenberg–Marquardt and Central Trajectories for Linearly Constrained Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 162(3), pages 705-717, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chee-Khian Sim, 2019. "Interior point method on semi-definite linear complementarity problems using the Nesterov–Todd (NT) search direction: polynomial complexity and local convergence," Computational Optimization and Applications, Springer, vol. 74(2), pages 583-621, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baha Alzalg & Khaled Badarneh & Ayat Ababneh, 2019. "An Infeasible Interior-Point Algorithm for Stochastic Second-Order Cone Optimization," Journal of Optimization Theory and Applications, Springer, vol. 181(1), pages 324-346, April.
    2. Baha Alzalg & Asma Gafour, 2023. "Convergence of a Weighted Barrier Algorithm for Stochastic Convex Quadratic Semidefinite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 490-515, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:72:y:2019:i:2:d:10.1007_s10589-018-0045-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.