IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v157y2013i3d10.1007_s10957-012-0242-z.html
   My bibliography  Save this article

Optimality Conditions for Generalized Ky Fan Quasi-Inequalities with Applications

Author

Listed:
  • Y. D. Xu

    (Chongqing University)

  • S. J. Li

    (Chongqing University
    Mathematical Sciences Research Institute in Chongqing)

Abstract

In this paper, the image space analysis is employed to study a generalized Ky Fan quasi-inequality with cone constraints. By virtue of a nonlinear scalarization function and a positive linear operator, a nonlinear (regular) weak separation function and a linear regular weak separation function are introduced. Nonlinear and, in particular, linear separations for the generalized Ky Fan quasi-inequality with cone constraints are characterized. Some necessary and sufficient optimality conditions, especially a saddle-point sufficient optimality condition for the generalized Ky Fan quasi-inequality with cone constraints, are obtained. As applications, some sufficient conditions for (weak) vector equilibrium flows of vector traffic equilibrium problems with capacity arc constraints, are derived.

Suggested Citation

  • Y. D. Xu & S. J. Li, 2013. "Optimality Conditions for Generalized Ky Fan Quasi-Inequalities with Applications," Journal of Optimization Theory and Applications, Springer, vol. 157(3), pages 663-684, June.
  • Handle: RePEc:spr:joptap:v:157:y:2013:i:3:d:10.1007_s10957-012-0242-z
    DOI: 10.1007/s10957-012-0242-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-012-0242-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-012-0242-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Chinaie & J. Zafarani, 2009. "Image Space Analysis and Scalarization of Multivalued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 142(3), pages 451-467, September.
    2. ,, 2001. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 17(6), pages 1157-1160, December.
    3. S. J. Li & Y. D. Xu & S. K. Zhu, 2012. "Nonlinear Separation Approach to Constrained Extremum Problems," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 842-856, September.
    4. J. B. Hiriart-Urruty, 1979. "Tangent Cones, Generalized Gradients and Mathematical Programming in Banach Spaces," Mathematics of Operations Research, INFORMS, vol. 4(1), pages 79-97, February.
    5. A. M. Rubinov & A. Uderzo, 2001. "On Global Optimality Conditions via Separation Functions," Journal of Optimization Theory and Applications, Springer, vol. 109(2), pages 345-370, May.
    6. A. Moldovan & L. Pellegrini, 2009. "On Regularity for Constrained Extremum Problems. Part 1: Sufficient Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 142(1), pages 147-163, July.
    7. G. Mastroeni, 2010. "Some applications of the image space analysis to the duality theory for constrained extremum problems," Journal of Global Optimization, Springer, vol. 46(4), pages 603-614, April.
    8. O. Chadli & N.C. Wong & J.C. Yao, 2003. "Equilibrium Problems with Applications to Eigenvalue Problems," Journal of Optimization Theory and Applications, Springer, vol. 117(2), pages 245-266, May.
    9. A. Moldovan & L. Pellegrini, 2009. "On Regularity for Constrained Extremum Problems. Part 2: Necessary Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 142(1), pages 165-183, July.
    10. Z. F. Li, 1998. "Benson Proper Efficiency in the Vector Optimization of Set-Valued Maps," Journal of Optimization Theory and Applications, Springer, vol. 98(3), pages 623-649, September.
    11. S. Li & K. Teo & X. Yang, 2005. "Generalized vector quasi-equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 61(3), pages 385-397, July.
    12. E. Miglierina & E. Molho, 2002. "Scalarization and Stability in Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 114(3), pages 657-670, September.
    13. ,, 2001. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 17(5), pages 1025-1031, October.
    14. G. Mastroeni, 2012. "On the image space analysis for vector quasi-equilibrium problems with a variable ordering relation," Journal of Global Optimization, Springer, vol. 53(2), pages 203-214, June.
    15. N. Hadjisavvas & S. Schaible, 1998. "From Scalar to Vector Equilibrium Problems in the Quasimonotone Case," Journal of Optimization Theory and Applications, Springer, vol. 96(2), pages 297-309, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiang Zhou & Wang Chen & Xinmin Yang, 2019. "Scalarizations and Optimality of Constrained Set-Valued Optimization Using Improvement Sets and Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 944-962, December.
    2. Shengjie Li & Yangdong Xu & Manxue You & Shengkun Zhu, 2018. "Constrained Extremum Problems and Image Space Analysis–Part I: Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 609-636, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. J. Li & Y. D. Xu & S. K. Zhu, 2012. "Nonlinear Separation Approach to Constrained Extremum Problems," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 842-856, September.
    2. Shengjie Li & Yangdong Xu & Manxue You & Shengkun Zhu, 2018. "Constrained Extremum Problems and Image Space Analysis–Part I: Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 609-636, June.
    3. Shengkun Zhu, 2018. "Image Space Analysis to Lagrange-Type Duality for Constrained Vector Optimization Problems with Applications," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 743-769, June.
    4. Zhiang Zhou & Wang Chen & Xinmin Yang, 2019. "Scalarizations and Optimality of Constrained Set-Valued Optimization Using Improvement Sets and Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 944-962, December.
    5. Khushboo & C. S. Lalitha, 2018. "Scalarizations for a unified vector optimization problem based on order representing and order preserving properties," Journal of Global Optimization, Springer, vol. 70(4), pages 903-916, April.
    6. S. K. Zhu & S. J. Li, 2014. "Unified Duality Theory for Constrained Extremum Problems. Part I: Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 738-762, June.
    7. S. K. Zhu & S. J. Li, 2014. "Unified Duality Theory for Constrained Extremum Problems. Part II: Special Duality Schemes," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 763-782, June.
    8. Manxue You & Shengjie Li, 2017. "Separation Functions and Optimality Conditions in Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 527-544, November.
    9. Ginchev Ivan & Guerraggio Angelo & Rocca Matteo, 2003. "From scalar to vector optimization," Economics and Quantitative Methods qf0305, Department of Economics, University of Insubria.
    10. Miglierina Enrico & Molho Elena & Rocca Matteo, 2004. "Well-posedness and scalarization in vector optimization," Economics and Quantitative Methods qf0403, Department of Economics, University of Insubria.
    11. Letizia Pellegrini & Shengkun Zhu, 2018. "Constrained Extremum Problems, Regularity Conditions and Image Space Analysis. Part II: The Vector Finite-Dimensional Case," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 788-810, June.
    12. Ginchev Ivan & Guerraggio Angelo & Rocca Matteo, 2003. "First-Order Conditions for C0,1 Constrained vector optimization," Economics and Quantitative Methods qf0307, Department of Economics, University of Insubria.
    13. Yang-Dong Xu & Cheng-Ling Zhou & Sheng-Kun Zhu, 2021. "Image Space Analysis for Set Optimization Problems with Applications," Journal of Optimization Theory and Applications, Springer, vol. 191(1), pages 311-343, October.
    14. Adela Capătă, 2011. "Existence results for proper efficient solutions of vector equilibrium problems and applications," Journal of Global Optimization, Springer, vol. 51(4), pages 657-675, December.
    15. Hong-Zhi Wei & Chun-Rong Chen & Sheng-Jie Li, 2018. "Characterizations for Optimality Conditions of General Robust Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 835-856, June.
    16. J. Li & N. J. Huang, 2010. "Image Space Analysis for Vector Variational Inequalities with Matrix Inequality Constraints and Applications," Journal of Optimization Theory and Applications, Springer, vol. 145(3), pages 459-477, June.
    17. Hezhi Luo & Huixian Wu & Jianzhen Liu, 2015. "On Saddle Points in Semidefinite Optimization via Separation Scheme," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 113-150, April.
    18. Shengkun Zhu, 2018. "Constrained Extremum Problems, Regularity Conditions and Image Space Analysis. Part I: The Scalar Finite-Dimensional Case," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 770-787, June.
    19. Dolf Talman & Zaifu Yang, 2012. "On a Parameterized System of Nonlinear Equations with Economic Applications," Journal of Optimization Theory and Applications, Springer, vol. 154(2), pages 644-671, August.
    20. Subramanian, S.V. & Subramanyam, Malavika A. & Selvaraj, Sakthivel & Kawachi, Ichiro, 2009. "Are self-reports of health and morbidities in developing countries misleading? Evidence from India," Social Science & Medicine, Elsevier, vol. 68(2), pages 260-265, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:157:y:2013:i:3:d:10.1007_s10957-012-0242-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.