IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v159y2013i3d10.1007_s10957-012-0181-8.html
   My bibliography  Save this article

A Two-Phase Algorithm for a Variational Inequality Formulation of Equilibrium Problems

Author

Listed:
  • J. Y. Bello Cruz

    (Universidade Federal de Goiás)

  • P. S. M. Santos

    (Universidade Federal Piauí)

  • S. Scheimberg

    (Universidade Federal do Rio de Janeiro)

Abstract

We introduce an explicit algorithm for solving nonsmooth equilibrium problems in finite-dimensional spaces. A particular iteration proceeds in two phases. In the first phase, an orthogonal projection onto the feasible set is replaced by projections onto suitable hyperplanes. In the second phase, a projected subgradient type iteration is replaced by a specific projection onto a halfspace. We prove, under suitable assumptions, convergence of the whole generated sequence to a solution of the problem. The proposed algorithm has a low computational cost per iteration and, some numerical results are reported.

Suggested Citation

  • J. Y. Bello Cruz & P. S. M. Santos & S. Scheimberg, 2013. "A Two-Phase Algorithm for a Variational Inequality Formulation of Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 159(3), pages 562-575, December.
  • Handle: RePEc:spr:joptap:v:159:y:2013:i:3:d:10.1007_s10957-012-0181-8
    DOI: 10.1007/s10957-012-0181-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-012-0181-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-012-0181-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Heusinger & C. Kanzow, 2009. "Relaxation Methods for Generalized Nash Equilibrium Problems with Inexact Line Search," Journal of Optimization Theory and Applications, Springer, vol. 143(1), pages 159-183, October.
    2. J. Bello Cruz & A. Iusem, 2010. "Convergence of direct methods for paramonotone variational inequalities," Computational Optimization and Applications, Springer, vol. 46(2), pages 247-263, June.
    3. I.V. Konnov, 2003. "Application of the Proximal Point Method to Nonmonotone Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 119(2), pages 317-333, November.
    4. A. Nedić & A. Ozdaglar, 2009. "Subgradient Methods for Saddle-Point Problems," Journal of Optimization Theory and Applications, Springer, vol. 142(1), pages 205-228, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yonghong Yao & Mihai Postolache & Jen-Chih Yao, 2019. "Iterative Algorithms for Pseudomonotone Variational Inequalities and Fixed Point Problems of Pseudocontractive Operators," Mathematics, MDPI, vol. 7(12), pages 1-13, December.
    2. J. X. Cruz Neto & F. M. O. Jacinto & P. A. Soares & J. C. O. Souza, 2018. "On maximal monotonicity of bifunctions on Hadamard manifolds," Journal of Global Optimization, Springer, vol. 72(3), pages 591-601, November.
    3. Trinh Ngoc Hai, 2020. "Two modified extragradient algorithms for solving variational inequalities," Journal of Global Optimization, Springer, vol. 78(1), pages 91-106, September.
    4. Boţ, R.I. & Csetnek, E.R. & Vuong, P.T., 2020. "The forward–backward–forward method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces," European Journal of Operational Research, Elsevier, vol. 287(1), pages 49-60.
    5. Yonghong Yao & Naseer Shahzad & Jen-Chih Yao, 2020. "Projected Subgradient Algorithms for Pseudomonotone Equilibrium Problems and Fixed Points of Pseudocontractive Operators," Mathematics, MDPI, vol. 8(4), pages 1-15, March.
    6. Riccardi, R. & Bonenti, F. & Allevi, E. & Avanzi, C. & Gnudi, A., 2015. "The steel industry: A mathematical model under environmental regulations," European Journal of Operational Research, Elsevier, vol. 242(3), pages 1017-1027.
    7. Vinayaka G. Yaji & Shalabh Bhatnagar, 2020. "Stochastic Recursive Inclusions in Two Timescales with Nonadditive Iterate-Dependent Markov Noise," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1405-1444, November.
    8. Liusheng Hou & Hongjin He & Junfeng Yang, 2016. "A partially parallel splitting method for multiple-block separable convex programming with applications to robust PCA," Computational Optimization and Applications, Springer, vol. 63(1), pages 273-303, January.
    9. Ke Han & Terry L. Friesz, 2017. "Continuity of the Effective Delay Operator for Networks Based on the Link Delay Model," Networks and Spatial Economics, Springer, vol. 17(4), pages 1095-1110, December.
    10. Guangming Zhou & Qin Wang & Wenjie Zhao, 2020. "Saddle points of rational functions," Computational Optimization and Applications, Springer, vol. 75(3), pages 817-832, April.
    11. Bello Cruz, J.Y. & Iusem, A.N., 2015. "Full convergence of an approximate projection method for nonsmooth variational inequalities," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 114(C), pages 2-13.
    12. Le Quang Thuy & Trinh Ngoc Hai, 2017. "A Projected Subgradient Algorithm for Bilevel Equilibrium Problems and Applications," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 411-431, November.
    13. Pham Ky Anh & Trinh Ngoc Hai, 2019. "Novel self-adaptive algorithms for non-Lipschitz equilibrium problems with applications," Journal of Global Optimization, Springer, vol. 73(3), pages 637-657, March.
    14. Alfredo N. Iusem & Alejandro Jofré & Philip Thompson, 2019. "Incremental Constraint Projection Methods for Monotone Stochastic Variational Inequalities," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 236-263, February.
    15. Han, Ke & Szeto, W.Y. & Friesz, Terry L., 2015. "Formulation, existence, and computation of boundedly rational dynamic user equilibrium with fixed or endogenous user tolerance," Transportation Research Part B: Methodological, Elsevier, vol. 79(C), pages 16-49.
    16. Jiawang Nie & Xindong Tang & Lingling Xu, 2021. "The Gauss–Seidel method for generalized Nash equilibrium problems of polynomials," Computational Optimization and Applications, Springer, vol. 78(2), pages 529-557, March.
    17. Desmond Cai & Subhonmesh Bose & Adam Wierman, 2019. "On the Role of a Market Maker in Networked Cournot Competition," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 1122-1144, August.
    18. Denizalp Goktas & Amy Greenwald, 2022. "Gradient Descent Ascent in Min-Max Stackelberg Games," Papers 2208.09690, arXiv.org.
    19. Han, Ke & Friesz, Terry L. & Szeto, W.Y. & Liu, Hongcheng, 2015. "Elastic demand dynamic network user equilibrium: Formulation, existence and computation," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 183-209.
    20. Song, Wenjing & Han, Ke & Wang, Yiou & Friesz, Terry L. & del Castillo, Enrique, 2018. "Statistical metamodeling of dynamic network loading," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 740-756.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:159:y:2013:i:3:d:10.1007_s10957-012-0181-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.