IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v113y2002i1d10.1023_a1014849028575.html
   My bibliography  Save this article

A Convergent Variant of the Nelder–Mead Algorithm

Author

Listed:
  • C.J. Price

    (University of Canterbury)

  • I.D. Coope

    (University of Canterbury)

  • D. Byatt

    (University of Canterbury)

Abstract

The Nelder–Mead algorithm (1965) for unconstrained optimization has been used extensively to solve parameter estimation and other problems. Despite its age, it is still the method of choice for many practitioners in the fields of statistics, engineering, and the physical and medical sciences because it is easy to code and very easy to use. It belongs to a class of methods which do not require derivatives and which are often claimed to be robust for problems with discontinuities or where the function values are noisy. Recently (1998), it has been shown that the method can fail to converge or converge to nonsolutions on certain classes of problems. Only very limited convergence results exist for a restricted class of problems in one or two dimensions. In this paper, a provably convergent variant of the Nelder–Mead simplex method is presented and analyzed. Numerical results are included to show that the modified algorithm is effective in practice.

Suggested Citation

  • C.J. Price & I.D. Coope & D. Byatt, 2002. "A Convergent Variant of the Nelder–Mead Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 113(1), pages 5-19, April.
  • Handle: RePEc:spr:joptap:v:113:y:2002:i:1:d:10.1023_a:1014849028575
    DOI: 10.1023/A:1014849028575
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1014849028575
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1014849028575?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. I. D. Coope & C. J. Price, 2000. "Frame Based Methods for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 107(2), pages 261-274, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ian Coope & Rachael Tappenden, 2019. "Efficient calculation of regular simplex gradients," Computational Optimization and Applications, Springer, vol. 72(3), pages 561-588, April.
    2. C.J. Price & I.D. Coope, 2003. "Frame-Based Ray Search Algorithms in Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 116(2), pages 359-377, February.
    3. Hsun-Heng Tsai & Chyun-Chau Fuh & Jeng-Rong Ho & Chih-Kuang Lin, 2021. "Design of Optimal Controllers for Unknown Dynamic Systems through the Nelder–Mead Simplex Method," Mathematics, MDPI, vol. 9(16), pages 1-14, August.
    4. Charles Audet & Christophe Tribes, 2018. "Mesh-based Nelder–Mead algorithm for inequality constrained optimization," Computational Optimization and Applications, Springer, vol. 71(2), pages 331-352, November.
    5. Henri Bonnel & C. Yalçın Kaya, 2010. "Optimization Over the Efficient Set of Multi-objective Convex Optimal Control Problems," Journal of Optimization Theory and Applications, Springer, vol. 147(1), pages 93-112, October.
    6. Žiga Rojec & Tadej Tuma & Jernej Olenšek & Árpád Bűrmen & Janez Puhan, 2022. "Meta-Optimization of Dimension Adaptive Parameter Schema for Nelder–Mead Algorithm in High-Dimensional Problems," Mathematics, MDPI, vol. 10(13), pages 1-16, June.
    7. Min Xi & Wenyu Sun & Yannan Chen & Hailin Sun, 2020. "A derivative-free algorithm for spherically constrained optimization," Journal of Global Optimization, Springer, vol. 76(4), pages 841-861, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin Dyke & Thomas J. Asaki, 2013. "Using QR Decomposition to Obtain a New Instance of Mesh Adaptive Direct Search with Uniformly Distributed Polling Directions," Journal of Optimization Theory and Applications, Springer, vol. 159(3), pages 805-821, December.
    2. A. Sanchez & Diego Martinez, 2011. "Optimization in Non-Standard Problems. An Application to the Provision of Public Inputs," Computational Economics, Springer;Society for Computational Economics, vol. 37(1), pages 13-38, January.
    3. C.J. Price & I.D. Coope, 2003. "Frame-Based Ray Search Algorithms in Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 116(2), pages 359-377, February.
    4. Y. Diouane & S. Gratton & L. Vicente, 2015. "Globally convergent evolution strategies for constrained optimization," Computational Optimization and Applications, Springer, vol. 62(2), pages 323-346, November.
    5. Benjamin Van Dyke, 2014. "Equal Angle Distribution of Polling Directions in Direct-Search Methods," Journal of Optimization, Hindawi, vol. 2014, pages 1-15, July.
    6. Ubaldo M. García-Palomares, 2020. "Non-monotone derivative-free algorithm for solving optimization models with linear constraints: extensions for solving nonlinearly constrained models via exact penalty methods," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 599-625, October.
    7. Javaid Ali & Muhammad Saeed & Muhammad Farhan Tabassam & Shaukat Iqbal, 2019. "Controlled showering optimization algorithm: an intelligent tool for decision making in global optimization," Computational and Mathematical Organization Theory, Springer, vol. 25(2), pages 132-164, June.
    8. Árpád Bűrmen & Jernej Olenšek & Tadej Tuma, 2015. "Mesh adaptive direct search with second directional derivative-based Hessian update," Computational Optimization and Applications, Springer, vol. 62(3), pages 693-715, December.
    9. Árpád Bűrmen & Iztok Fajfar, 2019. "Mesh adaptive direct search with simplicial Hessian update," Computational Optimization and Applications, Springer, vol. 74(3), pages 645-667, December.
    10. Charles Audet & Christophe Tribes, 2018. "Mesh-based Nelder–Mead algorithm for inequality constrained optimization," Computational Optimization and Applications, Springer, vol. 71(2), pages 331-352, November.
    11. David W. Dreisigmeyer, 2018. "Direct Search Methods on Reductive Homogeneous Spaces," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 585-604, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:113:y:2002:i:1:d:10.1023_a:1014849028575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.