IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v183y2019i3d10.1007_s10957-019-01592-x.html
   My bibliography  Save this article

Post-Pareto Analysis and a New Algorithm for the Optimal Parameter Tuning of the Elastic Net

Author

Listed:
  • Henri Bonnel

    (Université de la Nouvelle-Calédonie)

  • Christopher Schneider

    (Ernst-Abbe-Hochschule Jena)

Abstract

The paper deals with the optimal parameter tuning for the elastic net problem. This process is formulated as an optimization problem over a Pareto set. The Pareto set is associated with a convex multi-objective optimization problem, and, based on the scalarization theorem, we give a parametrical representation of it. Thus, the problem becomes a bilevel optimization with a unique response of the follower (strong Stackelberg game). Then, we apply this strategy to the parameter tuning for the elastic net problem. We propose a new algorithm called Ensalg to compute the optimal regularization path of the elastic net w.r.t. the sparsity-inducing term in the objective. In contrast to existing algorithms, our method can also deal with the so-called “many-at-a-time” case, where more than one variable becomes zero at the same time and/or changes from zero. In examples involving real-world data, we demonstrate the effectiveness of the algorithm.

Suggested Citation

  • Henri Bonnel & Christopher Schneider, 2019. "Post-Pareto Analysis and a New Algorithm for the Optimal Parameter Tuning of the Elastic Net," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 993-1027, December.
  • Handle: RePEc:spr:joptap:v:183:y:2019:i:3:d:10.1007_s10957-019-01592-x
    DOI: 10.1007/s10957-019-01592-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-019-01592-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-019-01592-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Horst, Reiner & Thoai, Nguyen V., 1999. "Maximizing a concave function over the efficient or weakly-efficient set," European Journal of Operational Research, Elsevier, vol. 117(2), pages 239-252, September.
    2. S. Dempe & N. Gadhi & A. B. Zemkoho, 2013. "New Optimality Conditions for the Semivectorial Bilevel Optimization Problem," Journal of Optimization Theory and Applications, Springer, vol. 157(1), pages 54-74, April.
    3. Henri Bonnel & Julien Collonge, 2015. "Optimization over the Pareto outcome set associated with a convex bi-objective optimization problem: theoretical results, deterministic algorithm and application to the stochastic case," Journal of Global Optimization, Springer, vol. 62(3), pages 481-505, July.
    4. Henri Bonnel & Léonard Todjihoundé & Constantin Udrişte, 2015. "Semivectorial Bilevel Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 464-486, November.
    5. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    6. Ankhili, Z. & Mansouri, A., 2009. "An exact penalty on bilevel programs with linear vector optimization lower level," European Journal of Operational Research, Elsevier, vol. 197(1), pages 36-41, August.
    7. Henri Bonnel & Julien Collonge, 2014. "Stochastic Optimization over a Pareto Set Associated with a Stochastic Multi-Objective Optimization Problem," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 405-427, August.
    8. Henri Bonnel & C. Yalçın Kaya, 2010. "Optimization Over the Efficient Set of Multi-objective Convex Optimal Control Problems," Journal of Optimization Theory and Applications, Springer, vol. 147(1), pages 93-112, October.
    9. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    10. H. Bonnel & J. Morgan, 2006. "Semivectorial Bilevel Optimization Problem: Penalty Approach," Journal of Optimization Theory and Applications, Springer, vol. 131(3), pages 365-382, December.
    11. R. Horst & N. V. Thoai & Y. Yamamoto & D. Zenke, 2007. "On Optimization over the Efficient Set in Linear Multicriteria Programming," Journal of Optimization Theory and Applications, Springer, vol. 134(3), pages 433-443, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pubudu L. W. Jayasekara & Andrew C. Pangia & Margaret M. Wiecek, 2023. "On solving parametric multiobjective quadratic programs with parameters in general locations," Annals of Operations Research, Springer, vol. 320(1), pages 123-172, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henri Bonnel & Léonard Todjihoundé & Constantin Udrişte, 2015. "Semivectorial Bilevel Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 464-486, November.
    2. Henri Bonnel & Julien Collonge, 2014. "Stochastic Optimization over a Pareto Set Associated with a Stochastic Multi-Objective Optimization Problem," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 405-427, August.
    3. Henri Bonnel & Julien Collonge, 2015. "Optimization over the Pareto outcome set associated with a convex bi-objective optimization problem: theoretical results, deterministic algorithm and application to the stochastic case," Journal of Global Optimization, Springer, vol. 62(3), pages 481-505, July.
    4. Thai Doan Chuong, 2020. "Optimality conditions for nonsmooth multiobjective bilevel optimization problems," Annals of Operations Research, Springer, vol. 287(2), pages 617-642, April.
    5. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    6. Oxana Babecka Kucharcukova & Jan Bruha, 2016. "Nowcasting the Czech Trade Balance," Working Papers 2016/11, Czech National Bank.
    7. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    8. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    9. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    10. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    11. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
    12. Dmitriy Drusvyatskiy & Adrian S. Lewis, 2018. "Error Bounds, Quadratic Growth, and Linear Convergence of Proximal Methods," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 919-948, August.
    13. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    14. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    15. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    16. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    17. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Working Papers 22-25, Federal Reserve Bank of Cleveland.
    18. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    19. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    20. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:183:y:2019:i:3:d:10.1007_s10957-019-01592-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.