IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v72y2019i3d10.1007_s10589-019-00063-3.html
   My bibliography  Save this article

Efficient calculation of regular simplex gradients

Author

Listed:
  • Ian Coope

    (University of Canterbury)

  • Rachael Tappenden

    (University of Canterbury)

Abstract

Simplex gradients are an essential feature of many derivative free optimization algorithms, and can be employed, for example, as part of the process of defining a direction of search, or as part of a termination criterion. The calculation of a general simplex gradient in $$\mathbf {R}^n$$ R n can be computationally expensive, and often requires an overhead operation count of $$\mathcal {O}(n^3)$$ O ( n 3 ) and in some algorithms a storage overhead of $$\mathcal {O}(n^2)$$ O ( n 2 ) . In this work we demonstrate that the linear algebra overhead and storage costs can be reduced, both to $$\mathcal {O}(n)$$ O ( n ) , when the simplex employed is regular and appropriately aligned. We also demonstrate that a gradient approximation that is second order accurate can be obtained cheaply from a combination of two, first order accurate (appropriately aligned) regular simplex gradients. Moreover, we show that, for an arbitrarily aligned regular simplex, the gradient can be computed in $$\mathcal {O}(n^2)$$ O ( n 2 ) operations.

Suggested Citation

  • Ian Coope & Rachael Tappenden, 2019. "Efficient calculation of regular simplex gradients," Computational Optimization and Applications, Springer, vol. 72(3), pages 561-588, April.
  • Handle: RePEc:spr:coopap:v:72:y:2019:i:3:d:10.1007_s10589-019-00063-3
    DOI: 10.1007/s10589-019-00063-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-019-00063-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-019-00063-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C.J. Price & I.D. Coope & D. Byatt, 2002. "A Convergent Variant of the Nelder–Mead Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 113(1), pages 5-19, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henri Bonnel & C. Yalçın Kaya, 2010. "Optimization Over the Efficient Set of Multi-objective Convex Optimal Control Problems," Journal of Optimization Theory and Applications, Springer, vol. 147(1), pages 93-112, October.
    2. C.J. Price & I.D. Coope, 2003. "Frame-Based Ray Search Algorithms in Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 116(2), pages 359-377, February.
    3. Žiga Rojec & Tadej Tuma & Jernej Olenšek & Árpád Bűrmen & Janez Puhan, 2022. "Meta-Optimization of Dimension Adaptive Parameter Schema for Nelder–Mead Algorithm in High-Dimensional Problems," Mathematics, MDPI, vol. 10(13), pages 1-16, June.
    4. Min Xi & Wenyu Sun & Yannan Chen & Hailin Sun, 2020. "A derivative-free algorithm for spherically constrained optimization," Journal of Global Optimization, Springer, vol. 76(4), pages 841-861, April.
    5. Hsun-Heng Tsai & Chyun-Chau Fuh & Jeng-Rong Ho & Chih-Kuang Lin, 2021. "Design of Optimal Controllers for Unknown Dynamic Systems through the Nelder–Mead Simplex Method," Mathematics, MDPI, vol. 9(16), pages 1-14, August.
    6. Charles Audet & Christophe Tribes, 2018. "Mesh-based Nelder–Mead algorithm for inequality constrained optimization," Computational Optimization and Applications, Springer, vol. 71(2), pages 331-352, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:72:y:2019:i:3:d:10.1007_s10589-019-00063-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.