IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v94y1997i3d10.1023_a1022653001160.html
   My bibliography  Save this article

Newton and Quasi-Newton Methods for Normal Maps with Polyhedral Sets

Author

Listed:
  • J. Han
  • D. Sun

Abstract

We present a generalized Newton method and a quasi-Newton method forsolving $$H(x): = F(\prod {_c } (x)) + x - \prod {_c } (x) = 0$$ , when C isa polyhedral set. For both the Newton and quasi-Newton methodsconsidered here, the subproblem to be solved is a linear system ofequations per iteration. The other characteristics of the quasi-Newtonmethod include: (i) a Q-superlinear convergencetheorem is established without assuming the existence ofH′ at a solution x * ofH(x)=0; (ii) only oneapproximate matrix is needed; (iii) the linearindependence condition is not assumed; (iv)Q-superlinear convergence is established on the originalvariable x; and (v) from theQR-factorization of the kth iterative matrix, we needat most $$O((1 + 2\left| {J_k } \right| + 2\left| {L_k } \right|)n^2 )$$ arithmetic operations to get the QR-factorization of the(k+1)th iterative matrix.

Suggested Citation

  • J. Han & D. Sun, 1997. "Newton and Quasi-Newton Methods for Normal Maps with Polyhedral Sets," Journal of Optimization Theory and Applications, Springer, vol. 94(3), pages 659-676, September.
  • Handle: RePEc:spr:joptap:v:94:y:1997:i:3:d:10.1023_a:1022653001160
    DOI: 10.1023/A:1022653001160
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1022653001160
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1022653001160?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephen M. Robinson, 1980. "Strongly Regular Generalized Equations," Mathematics of Operations Research, INFORMS, vol. 5(1), pages 43-62, February.
    2. Stephen M. Robinson, 1992. "Normal Maps Induced by Linear Transformations," Mathematics of Operations Research, INFORMS, vol. 17(3), pages 691-714, August.
    3. Jong-Shi Pang & Daniel Ralph, 1996. "Piecewise Smoothness, Local Invertibility, and Parametric Analysis of Normal Maps," Mathematics of Operations Research, INFORMS, vol. 21(2), pages 401-426, May.
    4. Liqun Qi, 1993. "Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations," Mathematics of Operations Research, INFORMS, vol. 18(1), pages 227-244, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Youyicun Lin & Shenglong Hu, 2022. "$${\text {B}}$$ B -Subdifferential of the Projection onto the Generalized Spectraplex," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 702-724, February.
    2. Shenglong Hu & Guoyin Li, 2021. "$${\text {B}}$$ B -subdifferentials of the projection onto the matrix simplex," Computational Optimization and Applications, Springer, vol. 80(3), pages 915-941, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Patriksson & R. Tyrrell Rockafellar, 2002. "A Mathematical Model and Descent Algorithm for Bilevel Traffic Management," Transportation Science, INFORMS, vol. 36(3), pages 271-291, August.
    2. Jong-Shi Pang & Defeng Sun & Jie Sun, 2003. "Semismooth Homeomorphisms and Strong Stability of Semidefinite and Lorentz Complementarity Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 39-63, February.
    3. Todd S. Munson & Francisco Facchinei & Michael C. Ferris & Andreas Fischer & Christian Kanzow, 2001. "The Semismooth Algorithm for Large Scale Complementarity Problems," INFORMS Journal on Computing, INFORMS, vol. 13(4), pages 294-311, November.
    4. Liang Chen & Anping Liao, 2020. "On the Convergence Properties of a Second-Order Augmented Lagrangian Method for Nonlinear Programming Problems with Inequality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 248-265, October.
    5. Zhengyong Zhou & Yunchan Peng, 2019. "The locally Chen–Harker–Kanzow–Smale smoothing functions for mixed complementarity problems," Journal of Global Optimization, Springer, vol. 74(1), pages 169-193, May.
    6. Y. Gao, 2004. "Representation of the Clarke Generalized Jacobian via the Quasidifferential," Journal of Optimization Theory and Applications, Springer, vol. 123(3), pages 519-532, December.
    7. Long, Qiang & Wu, Changzhi & Wang, Xiangyu, 2015. "A system of nonsmooth equations solver based upon subgradient method," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 284-299.
    8. Houduo Qi, 2009. "Local Duality of Nonlinear Semidefinite Programming," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 124-141, February.
    9. Shu Lu, 2008. "Sensitivity of Static Traffic User Equilibria with Perturbations in Arc Cost Function and Travel Demand," Transportation Science, INFORMS, vol. 42(1), pages 105-123, February.
    10. Shu Lu, 2010. "Variational Conditions Under the Constant Rank Constraint Qualification," Mathematics of Operations Research, INFORMS, vol. 35(1), pages 120-139, February.
    11. S. H. Pan & Y. X. Jiang, 2008. "Smoothing Newton Method for Minimizing the Sum of p-Norms," Journal of Optimization Theory and Applications, Springer, vol. 137(2), pages 255-275, May.
    12. L. Qi & D. Sun, 2002. "Smoothing Functions and Smoothing Newton Method for Complementarity and Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 113(1), pages 121-147, April.
    13. Shenglong Hu & Guoyin Li, 2021. "$${\text {B}}$$ B -subdifferentials of the projection onto the matrix simplex," Computational Optimization and Applications, Springer, vol. 80(3), pages 915-941, December.
    14. D. Ralph & H. Xu, 2005. "Implicit Smoothing and Its Application to Optimization with Piecewise Smooth Equality Constraints1," Journal of Optimization Theory and Applications, Springer, vol. 124(3), pages 673-699, March.
    15. Stephen M. Robinson, 2016. "Reduction of affine variational inequalities," Computational Optimization and Applications, Springer, vol. 65(2), pages 493-509, November.
    16. A. Izmailov & A. Kurennoy, 2014. "On regularity conditions for complementarity problems," Computational Optimization and Applications, Springer, vol. 57(3), pages 667-684, April.
    17. Shu Lu & Stephen M. Robinson, 2008. "Variational Inequalities over Perturbed Polyhedral Convex Sets," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 689-711, August.
    18. L. W. Zhang & Z. Q. Xia, 2001. "Newton-Type Methods for Quasidifferentiable Equations," Journal of Optimization Theory and Applications, Springer, vol. 108(2), pages 439-456, February.
    19. Fatemeh Abdi & Fatemeh Shakeri, 2017. "A New Descent Method for Symmetric Non-monotone Variational Inequalities with Application to Eigenvalue Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 173(3), pages 923-940, June.
    20. Axel Dreves & Christian Kanzow, 2011. "Nonsmooth optimization reformulations characterizing all solutions of jointly convex generalized Nash equilibrium problems," Computational Optimization and Applications, Springer, vol. 50(1), pages 23-48, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:94:y:1997:i:3:d:10.1023_a:1022653001160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.