IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v52y2012i3p471-485.html
   My bibliography  Save this article

Calibration of estimator-weights via semismooth Newton method

Author

Listed:
  • Ralf Münnich
  • Ekkehard Sachs
  • Matthias Wagner

Abstract

No abstract is available for this item.

Suggested Citation

  • Ralf Münnich & Ekkehard Sachs & Matthias Wagner, 2012. "Calibration of estimator-weights via semismooth Newton method," Journal of Global Optimization, Springer, vol. 52(3), pages 471-485, March.
  • Handle: RePEc:spr:jglopt:v:52:y:2012:i:3:p:471-485
    DOI: 10.1007/s10898-011-9759-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-011-9759-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-011-9759-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liqun Qi, 1993. "Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations," Mathematics of Operations Research, INFORMS, vol. 18(1), pages 227-244, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Pablo Burgard & Ralf Münnich & Martin Rupp, 2019. "A Generalized Calibration Approach Ensuring Coherent Estimates with Small Area Constraints," Research Papers in Economics 2019-10, University of Trier, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H. Xu & X. W. Chang, 1997. "Approximate Newton Methods for Nonsmooth Equations," Journal of Optimization Theory and Applications, Springer, vol. 93(2), pages 373-394, May.
    2. Dong-Hui Li & Liqun Qi & Judy Tam & Soon-Yi Wu, 2004. "A Smoothing Newton Method for Semi-Infinite Programming," Journal of Global Optimization, Springer, vol. 30(2), pages 169-194, November.
    3. Shuhuang Xiang & Xiaojun Chen, 2011. "Computation of generalized differentials in nonlinear complementarity problems," Computational Optimization and Applications, Springer, vol. 50(2), pages 403-423, October.
    4. John Duggan & Tasos Kalandrakis, 2011. "A Newton collocation method for solving dynamic bargaining games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 36(3), pages 611-650, April.
    5. Liang Chen & Anping Liao, 2020. "On the Convergence Properties of a Second-Order Augmented Lagrangian Method for Nonlinear Programming Problems with Inequality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 248-265, October.
    6. F. Facchinei & C. Lazzari, 2003. "Local Feasible QP-Free Algorithms for the Constrained Minimization of SC1 Functions," Journal of Optimization Theory and Applications, Springer, vol. 119(2), pages 281-316, November.
    7. H. Xu & B. M. Glover, 1997. "New Version of the Newton Method for Nonsmooth Equations," Journal of Optimization Theory and Applications, Springer, vol. 93(2), pages 395-415, May.
    8. Y. Gao, 2006. "Newton Methods for Quasidifferentiable Equations and Their Convergence," Journal of Optimization Theory and Applications, Springer, vol. 131(3), pages 417-428, December.
    9. Zhang, Jian-Jun, 2015. "The relaxed nonlinear PHSS-like iteration method for absolute value equations," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 266-274.
    10. Sanja Rapajić & Zoltan Papp, 2017. "A nonmonotone Jacobian smoothing inexact Newton method for NCP," Computational Optimization and Applications, Springer, vol. 66(3), pages 507-532, April.
    11. James V. Burke & Song Xu, 1998. "The Global Linear Convergence of a Noninterior Path-Following Algorithm for Linear Complementarity Problems," Mathematics of Operations Research, INFORMS, vol. 23(3), pages 719-734, August.
    12. J. Han & D. Sun, 1997. "Newton and Quasi-Newton Methods for Normal Maps with Polyhedral Sets," Journal of Optimization Theory and Applications, Springer, vol. 94(3), pages 659-676, September.
    13. G. L. Zhou & L. Caccetta, 2008. "Feasible Semismooth Newton Method for a Class of Stochastic Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 379-392, November.
    14. M. A. Tawhid & J. L. Goffin, 2008. "On Minimizing Some Merit Functions for Nonlinear Complementarity Problems under H-Differentiability," Journal of Optimization Theory and Applications, Springer, vol. 139(1), pages 127-140, October.
    15. C. Kanzow & H. Qi & L. Qi, 2003. "On the Minimum Norm Solution of Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 116(2), pages 333-345, February.
    16. D. Ralph & H. Xu, 2005. "Implicit Smoothing and Its Application to Optimization with Piecewise Smooth Equality Constraints1," Journal of Optimization Theory and Applications, Springer, vol. 124(3), pages 673-699, March.
    17. D. H. Li & N. Yamashita & M. Fukushima, 2001. "Nonsmooth Equation Based BFGS Method for Solving KKT Systems in Mathematical Programming," Journal of Optimization Theory and Applications, Springer, vol. 109(1), pages 123-167, April.
    18. Kenji Ueda & Nobuo Yamashita, 2012. "Global Complexity Bound Analysis of the Levenberg–Marquardt Method for Nonsmooth Equations and Its Application to the Nonlinear Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 152(2), pages 450-467, February.
    19. Gonglin Yuan & Zehong Meng & Yong Li, 2016. "A Modified Hestenes and Stiefel Conjugate Gradient Algorithm for Large-Scale Nonsmooth Minimizations and Nonlinear Equations," Journal of Optimization Theory and Applications, Springer, vol. 168(1), pages 129-152, January.
    20. Matthias Gerdts & Martin Kunkel, 2011. "A globally convergent semi-smooth Newton method for control-state constrained DAE optimal control problems," Computational Optimization and Applications, Springer, vol. 48(3), pages 601-633, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:52:y:2012:i:3:p:471-485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.