IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v187y2020i1d10.1007_s10957-015-0842-5.html
   My bibliography  Save this article

On the Convergence Properties of a Second-Order Augmented Lagrangian Method for Nonlinear Programming Problems with Inequality Constraints

Author

Listed:
  • Liang Chen

    (Hunan University)

  • Anping Liao

    (Hunan University)

Abstract

The objective of this paper is to conduct a theoretical study on the convergence properties of a second-order augmented Lagrangian method for solving nonlinear programming problems with both equality and inequality constraints. Specifically, we utilize a specially designed generalized Newton method to furnish the second-order iteration of the multipliers and show that when the linear independent constraint qualification and the strong second-order sufficient condition hold, the method employed in this paper is locally convergent and possesses a superlinear rate of convergence, although the penalty parameter is fixed and/or the strict complementarity fails.

Suggested Citation

  • Liang Chen & Anping Liao, 2020. "On the Convergence Properties of a Second-Order Augmented Lagrangian Method for Nonlinear Programming Problems with Inequality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 248-265, October.
  • Handle: RePEc:spr:joptap:v:187:y:2020:i:1:d:10.1007_s10957-015-0842-5
    DOI: 10.1007/s10957-015-0842-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-015-0842-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-015-0842-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephen M. Robinson, 1980. "Strongly Regular Generalized Equations," Mathematics of Operations Research, INFORMS, vol. 5(1), pages 43-62, February.
    2. Liqun Qi, 1993. "Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations," Mathematics of Operations Research, INFORMS, vol. 18(1), pages 227-244, February.
    3. R. T. Rockafellar, 1976. "Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 97-116, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Han & D. Sun, 1997. "Newton and Quasi-Newton Methods for Normal Maps with Polyhedral Sets," Journal of Optimization Theory and Applications, Springer, vol. 94(3), pages 659-676, September.
    2. Long, Qiang & Wu, Changzhi & Wang, Xiangyu, 2015. "A system of nonsmooth equations solver based upon subgradient method," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 284-299.
    3. Houduo Qi, 2009. "Local Duality of Nonlinear Semidefinite Programming," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 124-141, February.
    4. Francisco Aragón Artacho & Michaël Gaydu, 2012. "A Lyusternik–Graves theorem for the proximal point method," Computational Optimization and Applications, Springer, vol. 52(3), pages 785-803, July.
    5. Jonathan Eckstein & Paulo Silva, 2010. "Proximal methods for nonlinear programming: double regularization and inexact subproblems," Computational Optimization and Applications, Springer, vol. 46(2), pages 279-304, June.
    6. Todd S. Munson & Francisco Facchinei & Michael C. Ferris & Andreas Fischer & Christian Kanzow, 2001. "The Semismooth Algorithm for Large Scale Complementarity Problems," INFORMS Journal on Computing, INFORMS, vol. 13(4), pages 294-311, November.
    7. Michael Patriksson & R. Tyrrell Rockafellar, 2002. "A Mathematical Model and Descent Algorithm for Bilevel Traffic Management," Transportation Science, INFORMS, vol. 36(3), pages 271-291, August.
    8. A. Izmailov & A. Kurennoy, 2014. "On regularity conditions for complementarity problems," Computational Optimization and Applications, Springer, vol. 57(3), pages 667-684, April.
    9. L. W. Zhang & Z. Q. Xia, 2001. "Newton-Type Methods for Quasidifferentiable Equations," Journal of Optimization Theory and Applications, Springer, vol. 108(2), pages 439-456, February.
    10. Fatemeh Abdi & Fatemeh Shakeri, 2017. "A New Descent Method for Symmetric Non-monotone Variational Inequalities with Application to Eigenvalue Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 173(3), pages 923-940, June.
    11. Mauricio Romero Sicre, 2020. "On the complexity of a hybrid proximal extragradient projective method for solving monotone inclusion problems," Computational Optimization and Applications, Springer, vol. 76(3), pages 991-1019, July.
    12. M. Durea & R. Strugariu, 2011. "On parametric vector optimization via metric regularity of constraint systems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 409-425, December.
    13. Dong-Hui Li & Liqun Qi & Judy Tam & Soon-Yi Wu, 2004. "A Smoothing Newton Method for Semi-Infinite Programming," Journal of Global Optimization, Springer, vol. 30(2), pages 169-194, November.
    14. Jean-Pierre Crouzeix & Abdelhak Hassouni & Eladio Ocaña, 2023. "A Short Note on the Twice Differentiability of the Marginal Function of a Convex Function," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 857-867, August.
    15. John Duggan & Tasos Kalandrakis, 2011. "A Newton collocation method for solving dynamic bargaining games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 36(3), pages 611-650, April.
    16. Stefano Cipolla & Jacek Gondzio, 2023. "Proximal Stabilized Interior Point Methods and Low-Frequency-Update Preconditioning Techniques," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 1061-1103, June.
    17. Bingsheng He & Li-Zhi Liao & Xiang Wang, 2012. "Proximal-like contraction methods for monotone variational inequalities in a unified framework I: Effective quadruplet and primary methods," Computational Optimization and Applications, Springer, vol. 51(2), pages 649-679, March.
    18. Marwan A. Kutbi & Abdul Latif & Xiaolong Qin, 2019. "Convergence of Two Splitting Projection Algorithms in Hilbert Spaces," Mathematics, MDPI, vol. 7(10), pages 1-13, October.
    19. H. Xu & B. M. Glover, 1997. "New Version of the Newton Method for Nonsmooth Equations," Journal of Optimization Theory and Applications, Springer, vol. 93(2), pages 395-415, May.
    20. Giorgio, 2019. "On Second-Order Optimality Conditions in Smooth Nonlinear Programming Problems," DEM Working Papers Series 171, University of Pavia, Department of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:187:y:2020:i:1:d:10.1007_s10957-015-0842-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.