IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v53y2012i2p425-452.html
   My bibliography  Save this article

Active-set Newton methods for mathematical programs with vanishing constraints

Author

Listed:
  • A. Izmailov
  • A. Pogosyan

Abstract

Mathematical programs with vanishing constraints constitute a new class of difficult optimization problems with important applications in optimal topology design of mechanical structures. Vanishing constraints usually violate standard constraint qualifications, which gives rise to serious difficulties in theoretical and numerical treatment of these problems. In this work, we suggest several globalization strategies for the active-set Newton-type methods developed earlier by the authors for this problem class, preserving superlinear convergence rate of these methods under weak assumptions. Preliminary numerical results demonstrate that our approach is rather promising and competitive with respect to the existing alternatives. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • A. Izmailov & A. Pogosyan, 2012. "Active-set Newton methods for mathematical programs with vanishing constraints," Computational Optimization and Applications, Springer, vol. 53(2), pages 425-452, October.
  • Handle: RePEc:spr:coopap:v:53:y:2012:i:2:p:425-452
    DOI: 10.1007/s10589-012-9467-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-012-9467-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-012-9467-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Izmailov & A. Pogosyan & M. Solodov, 2012. "Semismooth Newton method for the lifted reformulation of mathematical programs with complementarity constraints," Computational Optimization and Applications, Springer, vol. 51(1), pages 199-221, January.
    2. A. F. Izmailov & M. V. Solodov, 2009. "Mathematical Programs with Vanishing Constraints: Optimality Conditions, Sensitivity, and a Relaxation Method," Journal of Optimization Theory and Applications, Springer, vol. 142(3), pages 501-532, September.
    3. Y. D. Chen & Y. Gao & Y.-J. Liu, 2010. "An Inexact SQP Newton Method for Convex SC1 Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 146(1), pages 33-49, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. K. Mishra & Vinay Singh & Vivek Laha, 2016. "On duality for mathematical programs with vanishing constraints," Annals of Operations Research, Springer, vol. 243(1), pages 249-272, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tadeusz Antczak, 2023. "On directionally differentiable multiobjective programming problems with vanishing constraints," Annals of Operations Research, Springer, vol. 328(2), pages 1181-1212, September.
    2. Christian Kanzow & Alexandra Schwartz, 2015. "The Price of Inexactness: Convergence Properties of Relaxation Methods for Mathematical Programs with Complementarity Constraints Revisited," Mathematics of Operations Research, INFORMS, vol. 40(2), pages 253-275, February.
    3. Wolfgang Achtziger & Tim Hoheisel & Christian Kanzow, 2013. "A smoothing-regularization approach to mathematical programs with vanishing constraints," Computational Optimization and Applications, Springer, vol. 55(3), pages 733-767, July.
    4. Qingjie Hu & Jiguang Wang & Yu Chen, 2020. "New dualities for mathematical programs with vanishing constraints," Annals of Operations Research, Springer, vol. 287(1), pages 233-255, April.
    5. Sajjad Kazemi & Nader Kanzi, 2018. "Constraint Qualifications and Stationary Conditions for Mathematical Programming with Non-differentiable Vanishing Constraints," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 800-819, December.
    6. Tadeusz Antczak, 2022. "Optimality conditions and Mond–Weir duality for a class of differentiable semi-infinite multiobjective programming problems with vanishing constraints," 4OR, Springer, vol. 20(3), pages 417-442, September.
    7. S. K. Mishra & Vinay Singh & Vivek Laha, 2016. "On duality for mathematical programs with vanishing constraints," Annals of Operations Research, Springer, vol. 243(1), pages 249-272, August.
    8. A. Izmailov & A. Kurennoy & M. Solodov, 2015. "Local convergence of the method of multipliers for variational and optimization problems under the noncriticality assumption," Computational Optimization and Applications, Springer, vol. 60(1), pages 111-140, January.
    9. Christian Kanzow & Alexandra Schwartz, 2014. "Convergence properties of the inexact Lin-Fukushima relaxation method for mathematical programs with complementarity constraints," Computational Optimization and Applications, Springer, vol. 59(1), pages 249-262, October.
    10. Matúš Benko & Helmut Gfrerer, 2017. "An SQP method for mathematical programs with vanishing constraints with strong convergence properties," Computational Optimization and Applications, Springer, vol. 67(2), pages 361-399, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:53:y:2012:i:2:p:425-452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.