IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v71y2018i4d10.1007_s10898-018-0644-z.html
   My bibliography  Save this article

On solving generalized convex MINLP problems using supporting hyperplane techniques

Author

Listed:
  • Tapio Westerlund

    (Åbo Akademi University
    University of Turku)

  • Ville-Pekka Eronen

    (University of Turku)

  • Marko M. Mäkelä

    (University of Turku)

Abstract

Solution methods for convex mixed integer nonlinear programming (MINLP) problems have, usually, proven convergence properties if the functions involved are differentiable and convex. For other classes of convex MINLP problems fewer results have been given. Classical differential calculus can, though, be generalized to more general classes of functions than differentiable, via subdifferentials and subgradients. In addition, more general than convex functions can be included in a convex problem if the functions involved are defined from convex level sets, instead of being defined as convex functions only. The notion generalized convex, used in the heading of this paper, refers to such additional properties. The generalization for the differentiability is made by using subgradients of Clarke’s subdifferential. Thus, all the functions in the problem are assumed to be locally Lipschitz continuous. The generalization of the functions is done by considering quasiconvex functions. Thus, instead of differentiable convex functions, nondifferentiable $$f^{\circ }$$ f ∘ -quasiconvex functions can be included in the actual problem formulation and a supporting hyperplane approach is given for the solution of the considered MINLP problem. Convergence to a global minimum is proved for the algorithm, when minimizing an $$f^{\circ }$$ f ∘ -pseudoconvex function, subject to $$f^{\circ }$$ f ∘ -pseudoconvex constraints. With some additional conditions, the proof is also valid for $$f^{\circ }$$ f ∘ -quasiconvex functions, which sums up the properties of the method, treated in the paper. The main contribution in this paper is the generalization of the Extended Supporting Hyperplane method in Eronen et al. (J Glob Optim 69(2):443–459, 2017) to also solve problems with $$f^{\circ }$$ f ∘ -pseudoconvex objective function.

Suggested Citation

  • Tapio Westerlund & Ville-Pekka Eronen & Marko M. Mäkelä, 2018. "On solving generalized convex MINLP problems using supporting hyperplane techniques," Journal of Global Optimization, Springer, vol. 71(4), pages 987-1011, August.
  • Handle: RePEc:spr:jglopt:v:71:y:2018:i:4:d:10.1007_s10898-018-0644-z
    DOI: 10.1007/s10898-018-0644-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-018-0644-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-018-0644-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arthur F. Veinott, 1967. "The Supporting Hyperplane Method for Unimodal Programming," Operations Research, INFORMS, vol. 15(1), pages 147-152, February.
    2. Andreas Lundell & Anders Skjäl & Tapio Westerlund, 2013. "A reformulation framework for global optimization," Journal of Global Optimization, Springer, vol. 57(1), pages 115-141, September.
    3. Adil Bagirov & Napsu Karmitsa & Marko M. Mäkelä, 2014. "Introduction to Nonsmooth Optimization," Springer Books, Springer, edition 127, number 978-3-319-08114-4, July.
    4. Ville-Pekka Eronen & Jan Kronqvist & Tapio Westerlund & Marko M. Mäkelä & Napsu Karmitsa, 2017. "Method for solving generalized convex nonsmooth mixed-integer nonlinear programming problems," Journal of Global Optimization, Springer, vol. 69(2), pages 443-459, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andreas Lundell & Jan Kronqvist & Tapio Westerlund, 2022. "The supporting hyperplane optimization toolkit for convex MINLP," Journal of Global Optimization, Springer, vol. 84(1), pages 1-41, September.
    2. Martina Kuchlbauer & Frauke Liers & Michael Stingl, 2022. "Outer Approximation for Mixed-Integer Nonlinear Robust Optimization," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 1056-1086, December.
    3. Felipe Serrano & Robert Schwarz & Ambros Gleixner, 2020. "On the relation between the extended supporting hyperplane algorithm and Kelley’s cutting plane algorithm," Journal of Global Optimization, Springer, vol. 78(1), pages 161-179, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felipe Serrano & Robert Schwarz & Ambros Gleixner, 2020. "On the relation between the extended supporting hyperplane algorithm and Kelley’s cutting plane algorithm," Journal of Global Optimization, Springer, vol. 78(1), pages 161-179, September.
    2. Ville-Pekka Eronen & Jan Kronqvist & Tapio Westerlund & Marko M. Mäkelä & Napsu Karmitsa, 2017. "Method for solving generalized convex nonsmooth mixed-integer nonlinear programming problems," Journal of Global Optimization, Springer, vol. 69(2), pages 443-459, October.
    3. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2018. "Minimizing Piecewise-Concave Functions Over Polyhedra," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 580-597, May.
    4. Karmitsa, Napsu & Bagirov, Adil M. & Taheri, Sona, 2017. "New diagonal bundle method for clustering problems in large data sets," European Journal of Operational Research, Elsevier, vol. 263(2), pages 367-379.
    5. Nader Kanzi & Majid Soleimani-damaneh, 2020. "Characterization of the weakly efficient solutions in nonsmooth quasiconvex multiobjective optimization," Journal of Global Optimization, Springer, vol. 77(3), pages 627-641, July.
    6. Olivier Morand & Kevin Reffett & Suchismita Tarafdar, 2018. "Generalized Envelope Theorems: Applications to Dynamic Programming," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 650-687, March.
    7. Daniel Dörfler, 2022. "On the Approximation of Unbounded Convex Sets by Polyhedra," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 265-287, July.
    8. Frederic H. Murphy, 1972. "Row Dropping Procedures for Cutting Plane Algorithms," Discussion Papers 16, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    9. Wim Ackooij & Welington Oliveira, 2014. "Level bundle methods for constrained convex optimization with various oracles," Computational Optimization and Applications, Springer, vol. 57(3), pages 555-597, April.
    10. H. Apolinário & E. Papa Quiroz & P. Oliveira, 2016. "A scalarization proximal point method for quasiconvex multiobjective minimization," Journal of Global Optimization, Springer, vol. 64(1), pages 79-96, January.
    11. Javad Koushki & Majid Soleimani-damaneh, 2020. "Characterization of generalized FJ and KKT conditions in nonsmooth nonconvex optimization," Journal of Global Optimization, Springer, vol. 76(2), pages 407-431, February.
    12. Pey-Chun Chen & Pierre Hansen & Brigitte Jaumard & Hoang Tuy, 1998. "Solution of the Multisource Weber and Conditional Weber Problems by D.-C. Programming," Operations Research, INFORMS, vol. 46(4), pages 548-562, August.
    13. Wendel Melo & Marcia Fampa & Fernanda Raupp, 2020. "An overview of MINLP algorithms and their implementation in Muriqui Optimizer," Annals of Operations Research, Springer, vol. 286(1), pages 217-241, March.
    14. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico & Adil M. Bagirov, 2018. "Minimizing nonsmooth DC functions via successive DC piecewise-affine approximations," Journal of Global Optimization, Springer, vol. 71(1), pages 37-55, May.
    15. A. M. Bagirov & N. Hoseini Monjezi & S. Taheri, 2021. "An augmented subgradient method for minimizing nonsmooth DC functions," Computational Optimization and Applications, Springer, vol. 80(2), pages 411-438, November.
    16. Fabrice Poirion & Quentin Mercier & Jean-Antoine Désidéri, 2017. "Descent algorithm for nonsmooth stochastic multiobjective optimization," Computational Optimization and Applications, Springer, vol. 68(2), pages 317-331, November.
    17. Andreas Lundell & Jan Kronqvist, 2022. "Polyhedral approximation strategies for nonconvex mixed-integer nonlinear programming in SHOT," Journal of Global Optimization, Springer, vol. 82(4), pages 863-896, April.
    18. Wim Ackooij, 2014. "Decomposition approaches for block-structured chance-constrained programs with application to hydro-thermal unit commitment," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 80(3), pages 227-253, December.
    19. Jan Kronqvist & Andreas Lundell & Tapio Westerlund, 2018. "Reformulations for utilizing separability when solving convex MINLP problems," Journal of Global Optimization, Springer, vol. 71(3), pages 571-592, July.
    20. Jean-Pierre Crouzeix & Nadezda Sukhorukova & Julien Ugon, 2017. "Characterization Theorem for Best Polynomial Spline Approximation with Free Knots, Variable Degree and Fixed Tails," Journal of Optimization Theory and Applications, Springer, vol. 172(3), pages 950-964, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:71:y:2018:i:4:d:10.1007_s10898-018-0644-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.