IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v121y2004i1d10.1023_bjota.0000026129.07165.5a.html
   My bibliography  Save this article

On the Global Optimization of Sums of Linear Fractional Functions over a Convex Set

Author

Listed:
  • H. P. Benson

    (University of Florida)

Abstract

The global optimization of the sum of linear fractional functions has attracted the interest of researchers and practitioners for a number of years. Since these types of optimization problems are nonconvex, various specialized algorithms have been proposed for globally solving these problems. However, these algorithms may be difficult to implement and are usually relatively inaccessible. In this article, we show that, by using suitable transformations, a number of potential and known methods for globally solving these problems become available. These methods are often more accessible and use more standard tools than the customized algorithms proposed to date. They include, for example, parametric convex programming and concave minimization methods.

Suggested Citation

  • H. P. Benson, 2004. "On the Global Optimization of Sums of Linear Fractional Functions over a Convex Set," Journal of Optimization Theory and Applications, Springer, vol. 121(1), pages 19-39, April.
  • Handle: RePEc:spr:joptap:v:121:y:2004:i:1:d:10.1023_b:jota.0000026129.07165.5a
    DOI: 10.1023/B:JOTA.0000026129.07165.5a
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/B:JOTA.0000026129.07165.5a
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/B:JOTA.0000026129.07165.5a?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. P. Benson, 2003. "Generating Sum-of-Ratios Test Problems in Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 119(3), pages 615-621, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. H. P. Benson, 2010. "Branch-and-Bound Outer Approximation Algorithm for Sum-of-Ratios Fractional Programs," Journal of Optimization Theory and Applications, Springer, vol. 146(1), pages 1-18, July.
    2. Ruan, N. & Gao, D.Y., 2015. "Global solutions to fractional programming problem with ratio of nonconvex functions," Applied Mathematics and Computation, Elsevier, vol. 255(C), pages 66-72.
    3. Bo Zhang & YueLin Gao & Xia Liu & XiaoLi Huang, 2022. "An Outcome-Space-Based Branch-and-Bound Algorithm for a Class of Sum-of-Fractions Problems," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 830-855, March.
    4. Qingyun Tian & Yun Hui Lin & David Z. W. Wang, 2021. "Autonomous and conventional bus fleet optimization for fixed-route operations considering demand uncertainty," Transportation, Springer, vol. 48(5), pages 2735-2763, October.
    5. Lin, Yun Hui & Wang, Yuan & He, Dongdong & Lee, Loo Hay, 2020. "Last-mile delivery: Optimal locker location under multinomial logit choice model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    6. Jiao, Hongwei & Ma, Junqiao, 2022. "An efficient algorithm and complexity result for solving the sum of general affine ratios problem," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    7. H. P. Benson, 2007. "Solving Sum of Ratios Fractional Programs via Concave Minimization," Journal of Optimization Theory and Applications, Springer, vol. 135(1), pages 1-17, October.
    8. Erdogan, Günes & Cordeau, Jean-François & Laporte, Gilbert, 2010. "The Attractive Traveling Salesman Problem," European Journal of Operational Research, Elsevier, vol. 203(1), pages 59-69, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Carosi & Laura Martein, 2008. "A sequential method for a class of pseudoconcave fractional problems," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 16(2), pages 153-164, June.
    2. Laura Carosi & Laura Martein & Ezat Valipour, 2013. "Simplex-like sequential methods for a class of generalized fractional programs," Discussion Papers 2013/168, Dipartimento di Economia e Management (DEM), University of Pisa, Pisa, Italy.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:121:y:2004:i:1:d:10.1023_b:jota.0000026129.07165.5a. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.