IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v140y2009i3d10.1007_s10957-008-9462-7.html
   My bibliography  Save this article

Different Conjugate Dual Problems in Vector Optimization and Their Relations

Author

Listed:
  • C. R. Chen

    (Chongqing University)

  • S. J. Li

    (Chongqing University)

Abstract

In this paper, three kinds of conjugate dual problems are constructed by virtue of different perturbations to a constrained vector optimization problem. Weak duality, strong duality, and some inclusion relations for the image sets of the three dual problems are established.

Suggested Citation

  • C. R. Chen & S. J. Li, 2009. "Different Conjugate Dual Problems in Vector Optimization and Their Relations," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 443-461, March.
  • Handle: RePEc:spr:joptap:v:140:y:2009:i:3:d:10.1007_s10957-008-9462-7
    DOI: 10.1007/s10957-008-9462-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-008-9462-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-008-9462-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hidefumi Kawasaki, 1982. "A Duality Theorem in Multiobjective Nonlinear Programming," Mathematics of Operations Research, INFORMS, vol. 7(1), pages 95-110, February.
    2. Wen Song, 1998. "A generalization of Fenchel duality in set-valued vector optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 48(2), pages 259-272, November.
    3. R. I. Boţ & G. Kassay & G. Wanka, 2005. "Strong Duality for Generalized Convex Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 127(1), pages 45-70, October.
    4. Hidefumi Kawasaki, 1981. "Conjugate Relations and Weak Subdifferentials of Relations," Mathematics of Operations Research, INFORMS, vol. 6(4), pages 593-607, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Y. Azimov, 2008. "Duality for Set-Valued Multiobjective Optimization Problems, Part 1: Mathematical Programming," Journal of Optimization Theory and Applications, Springer, vol. 137(1), pages 61-74, April.
    2. Li, S.J. & Chen, C.R. & Wu, S.Y., 2009. "Conjugate dual problems in constrained set-valued optimization and applications," European Journal of Operational Research, Elsevier, vol. 196(1), pages 21-32, July.
    3. Nguyen Mau Nam & Gary Sandine & Nguyen Nang Thieu & Nguyen Dong Yen, 2024. "A Notion of Fenchel Conjugate for Set-Valued Mappings," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1263-1292, November.
    4. P. H. Sach, 2003. "Nearly Subconvexlike Set-Valued Maps and Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 119(2), pages 335-356, November.
    5. M. D. Fajardo & J. Vidal, 2018. "Necessary and Sufficient Conditions for Strong Fenchel–Lagrange Duality via a Coupling Conjugation Scheme," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 57-73, January.
    6. Giovanni Crespi & Ivan Ginchev & Matteo Rocca, 2006. "First-order optimality conditions in set-valued optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(1), pages 87-106, February.
    7. R. I. Boţ & S. M. Grad & G. Wanka, 2007. "Fenchel’s Duality Theorem for Nearly Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 132(3), pages 509-515, March.
    8. Crespi Giovanni P. & Ginchev Ivan & Rocca Matteo, 2004. "First order optimality conditions in set-valued optimization," Economics and Quantitative Methods qf04010, Department of Economics, University of Insubria.
    9. Kasina, Saamrat & Hobbs, Benjamin F., 2020. "The value of cooperation in interregional transmission planning: A noncooperative equilibrium model approach," European Journal of Operational Research, Elsevier, vol. 285(2), pages 740-752.
    10. D. S. Kim & G. M. Lee & P. H. Sach, 2004. "Hartley Proper Efficiency in Multifunction Optimization," Journal of Optimization Theory and Applications, Springer, vol. 120(1), pages 129-145, January.
    11. Najafi, Arsalan & Homaee, Omid & Jasiński, Michał & Tsaousoglou, Georgios & Leonowicz, Zbigniew, 2023. "Integrating hydrogen technology into active distribution networks: The case of private hydrogen refueling stations," Energy, Elsevier, vol. 278(PB).
    12. R. I. Boţ & S. M. Grad & G. Wanka, 2006. "Fenchel-Lagrange Duality Versus Geometric Duality in Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 129(1), pages 33-54, April.
    13. P. H. Sach, 2007. "Moreau–Rockafellar Theorems for Nonconvex Set-Valued Maps," Journal of Optimization Theory and Applications, Springer, vol. 133(2), pages 213-227, May.
    14. Yalçın Küçük & İlknur Atasever & Mahide Küçük, 2012. "Weak Fenchel and weak Fenchel-Lagrange conjugate duality for nonconvex scalar optimization problems," Journal of Global Optimization, Springer, vol. 54(4), pages 813-830, December.
    15. R. I. Boţ & S. M. Grad & G. Wanka, 2007. "New Constraint Qualification and Conjugate Duality for Composed Convex Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 135(2), pages 241-255, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:140:y:2009:i:3:d:10.1007_s10957-008-9462-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.