IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ipbs0360544223013336.html
   My bibliography  Save this article

Integrating hydrogen technology into active distribution networks: The case of private hydrogen refueling stations

Author

Listed:
  • Najafi, Arsalan
  • Homaee, Omid
  • Jasiński, Michał
  • Tsaousoglou, Georgios
  • Leonowicz, Zbigniew

Abstract

Private hydrogen refueling stations (HRSs) are expected to be an integrated part of active distribution networks (ADNs) in the near future. In this paper, we consider an ADN operator, responsible for serving the network’s electricity demands in a cost-effective manner, while ensuring the network’s operational safety. The ADN’s resources include micro-turbines, energy storage systems, and private HRSs that deliberate over buying hydrogen directly, or converting electricity to hydrogen on-site by using their electrolyzers and hydrogen tanks. Each HRS is after maximizing its profit, stemming from serving the stochastic demands of hydrogen vehicles. In the presence of stochastic hydrogen demands, volatile wholesale electricity market prices, and deliberate, profit-maximizing HRSs, the ADN’s goal takes the form of a stochastic-robust bi-level optimization problem. After a number of reformulations, we bring the problem to a solvable form. Numerical results demonstrate the effectiveness of the model towards integrating private HRSs into ADNs, and maintaining the ADN’s safe operation under severe uncertainties.

Suggested Citation

  • Najafi, Arsalan & Homaee, Omid & Jasiński, Michał & Tsaousoglou, Georgios & Leonowicz, Zbigniew, 2023. "Integrating hydrogen technology into active distribution networks: The case of private hydrogen refueling stations," Energy, Elsevier, vol. 278(PB).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:pb:s0360544223013336
    DOI: 10.1016/j.energy.2023.127939
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223013336
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127939?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Najafi, Arsalan & Jasiński, Michał & Leonowicz, Zbigniew, 2022. "A hybrid distributed framework for optimal coordination of electric vehicle aggregators problem," Energy, Elsevier, vol. 249(C).
    2. Najafi, Arsalan & Pourakbari-Kasmaei, Mahdi & Jasinski, Michal & Lehtonen, Matti & Leonowicz, Zbigniew, 2022. "A medium-term hybrid IGDT-Robust optimization model for optimal self scheduling of multi-carrier energy systems," Energy, Elsevier, vol. 238(PA).
    3. Mohseni, Soheil & Brent, Alan C. & Burmester, Daniel, 2020. "A comparison of metaheuristics for the optimal capacity planning of an isolated, battery-less, hydrogen-based micro-grid," Applied Energy, Elsevier, vol. 259(C).
    4. Alazemi, Jasem & Andrews, John, 2015. "Automotive hydrogen fuelling stations: An international review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 483-499.
    5. Antonio J. Conejo & Miguel Carrión & Juan M. Morales, 2010. "Decision Making Under Uncertainty in Electricity Markets," International Series in Operations Research and Management Science, Springer, number 978-1-4419-7421-1, December.
    6. Mansour-Saatloo, Amin & Pezhmani, Yasin & Mirzaei, Mohammad Amin & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Marzband, Mousa & Anvari-Moghaddam, Amjad, 2021. "Robust decentralized optimization of Multi-Microgrids integrated with Power-to-X technologies," Applied Energy, Elsevier, vol. 304(C).
    7. Najafi, Arsalan & Pourakbari-Kasmaei, Mahdi & Jasinski, Michal & Contreras, Javier & Lehtonen, Matti & Leonowicz, Zbigniew, 2022. "The role of EV based peer-to-peer transactive energy hubs in distribution network optimization," Applied Energy, Elsevier, vol. 319(C).
    8. Nistor, Silviu & Dave, Saraansh & Fan, Zhong & Sooriyabandara, Mahesh, 2016. "Technical and economic analysis of hydrogen refuelling," Applied Energy, Elsevier, vol. 167(C), pages 211-220.
    9. R. I. Boţ & G. Kassay & G. Wanka, 2005. "Strong Duality for Generalized Convex Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 127(1), pages 45-70, October.
    10. Wu, Xiong & Zhao, Wencheng & Li, Haoyu & Liu, Bingwen & Zhang, Ziyu & Wang, Xiuli, 2021. "Multi-stage stochastic programming based offering strategy for hydrogen fueling station in joint energy, reserve markets," Renewable Energy, Elsevier, vol. 180(C), pages 605-615.
    11. Wu, Xiong & Qi, Shixiong & Wang, Zhao & Duan, Chao & Wang, Xiuli & Li, Furong, 2019. "Optimal scheduling for microgrids with hydrogen fueling stations considering uncertainty using data-driven approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    12. Nikmehr, Nima, 2020. "Distributed robust operational optimization of networked microgrids embedded interconnected energy hubs," Energy, Elsevier, vol. 199(C).
    13. Xu, Chuanbo & Wu, Yunna & Dai, Shuyu, 2020. "What are the critical barriers to the development of hydrogen refueling stations in China? A modified fuzzy DEMATEL approach," Energy Policy, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xia, Weiyi & Ren, Zhouyang & Qin, Huiling & Dong, ZhaoYang, 2024. "A coordinated operation method for networked hydrogen-power-transportation system," Energy, Elsevier, vol. 296(C).
    2. Gao, Jianwei & Wu, Haoyu & Chen, Li & Meng, Qichen & Liu, Jiangtao, 2024. "Research on optimization layout of hydrogen refueling facility network based on renewable energy hydrogen production mode," Energy, Elsevier, vol. 296(C).
    3. Hui Xiang & Xiao Liao & Yanjie Wang & Hui Cao & Xianjing Zhong & Qingshu Guan & Weiyun Ru, 2024. "A Tri-Level Transaction Method for Microgrid Clusters Considering Uncertainties and Dynamic Hydrogen Prices," Energies, MDPI, vol. 17(21), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pang, Yi & Pan, Lei & Zhang, Jingmei & Chen, Jianwei & Dong, Yan & Sun, Hexu, 2022. "Integrated sizing and scheduling of an off-grid integrated energy system for an isolated renewable energy hydrogen refueling station," Applied Energy, Elsevier, vol. 323(C).
    2. Zhao, Tian & Liu, Zhixin & Jamasb, Tooraj, 2022. "Developing hydrogen refueling stations: An evolutionary game approach and the case of China," Energy Economics, Elsevier, vol. 115(C).
    3. Najafi, Arsalan & Homaee, Omid & Jasiński, Michał & Pourakbari-Kasmaei, Mahdi & Lehtonen, Matti & Leonowicz, Zbigniew, 2023. "Participation of hydrogen-rich energy hubs in day-ahead and regulation markets: A hybrid stochastic-robust model," Applied Energy, Elsevier, vol. 339(C).
    4. Mansour-Saatloo, Amin & Pezhmani, Yasin & Mirzaei, Mohammad Amin & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Marzband, Mousa & Anvari-Moghaddam, Amjad, 2021. "Robust decentralized optimization of Multi-Microgrids integrated with Power-to-X technologies," Applied Energy, Elsevier, vol. 304(C).
    5. Najafi, Arsalan & Jasiński, Michał & Leonowicz, Zbigniew, 2022. "A hybrid distributed framework for optimal coordination of electric vehicle aggregators problem," Energy, Elsevier, vol. 249(C).
    6. Rezaei, Navid & Pezhmani, Yasin & Khazali, Amirhossein, 2022. "Economic-environmental risk-averse optimal heat and power energy management of a grid-connected multi microgrid system considering demand response and bidding strategy," Energy, Elsevier, vol. 240(C).
    7. Liu, Zhouding & Nazari-Heris, Morteza, 2023. "Optimal bidding strategy of multi-carrier systems in electricity markets using information gap decision theory," Energy, Elsevier, vol. 280(C).
    8. Zhang, Guodao & Ge, Yisu & Pan, Xiaotian & Zheng, Yun & Yang, Yanhong, 2023. "Hybrid robust-stochastic multi-objective optimization of combined cooling, heating, hydrogen and power-based microgrids," Energy, Elsevier, vol. 274(C).
    9. Guo, Zhongjie & Wei, Wei & Chen, Laijun & Zhang, Xiaoping & Mei, Shengwei, 2021. "Equilibrium model of a regional hydrogen market with renewable energy based suppliers and transportation costs," Energy, Elsevier, vol. 220(C).
    10. Zhou, Kaile & Fei, Zhineng & Hu, Rong, 2023. "Hybrid robust decentralized optimization of emission-aware multi-energy microgrids considering multiple uncertainties," Energy, Elsevier, vol. 265(C).
    11. Apostolou, D. & Xydis, G., 2019. "A literature review on hydrogen refuelling stations and infrastructure. Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    12. Jiarui Wang & Dexin Li & Xiangyu Lv & Xiangdong Meng & Jiajun Zhang & Tengfei Ma & Wei Pei & Hao Xiao, 2022. "Two-Stage Energy Management Strategies of Sustainable Wind-PV-Hydrogen-Storage Microgrid Based on Receding Horizon Optimization," Energies, MDPI, vol. 15(8), pages 1-18, April.
    13. Xu, Xinhai & Xu, Ben & Dong, Jun & Liu, Xiaotong, 2017. "Near-term analysis of a roll-out strategy to introduce fuel cell vehicles and hydrogen stations in Shenzhen China," Applied Energy, Elsevier, vol. 196(C), pages 229-237.
    14. Tostado-Véliz, Marcos & Jordehi, Ahmad Rezaee & Mansouri, Seyed Amir & Jurado, Francisco, 2023. "A two-stage IGDT-stochastic model for optimal scheduling of energy communities with intelligent parking lots," Energy, Elsevier, vol. 263(PD).
    15. Khaligh, Vahid & Ghezelbash, Azam & Mazidi, Mohammadreza & Liu, Jay & Ryu, Jun-Hyung, 2023. "P-robust energy management of a multi-energy microgrid enabled with energy conversions under various uncertainties," Energy, Elsevier, vol. 271(C).
    16. Yasemin Merzifonluoglu & Eray Uzgoren, 2018. "Photovoltaic power plant design considering multiple uncertainties and risk," Annals of Operations Research, Springer, vol. 262(1), pages 153-184, March.
    17. Pandžić, Hrvoje & Kuzle, Igor & Capuder, Tomislav, 2013. "Virtual power plant mid-term dispatch optimization," Applied Energy, Elsevier, vol. 101(C), pages 134-141.
    18. Wang, Dongxiao & Qiu, Jing & Reedman, Luke & Meng, Ke & Lai, Loi Lei, 2018. "Two-stage energy management for networked microgrids with high renewable penetration," Applied Energy, Elsevier, vol. 226(C), pages 39-48.
    19. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    20. Christos N. Dimitriadis & Evangelos G. Tsimopoulos & Michael C. Georgiadis, 2021. "A Review on the Complementarity Modelling in Competitive Electricity Markets," Energies, MDPI, vol. 14(21), pages 1-27, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:pb:s0360544223013336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.