IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v121y2004i3d10.1023_bjota.0000037602.13941.ed.html
   My bibliography  Save this article

Proper Efficiency in Vector Optimization on Real Linear Spaces

Author

Listed:
  • M. Adán

    (Universidad de Castilla-La Mancha)

  • V. Novo

    (Universidad Nacional de Educación a Distancia)

Abstract

In this paper, we use an algebraic type of closure, which is called vector closure, and through it we introduce some adaptations to the proper efficiency in the sense of Hurwicz, Benson, and Borwein in real linear spaces without any particular topology. Scalarization, multiplier rules, and saddle-point theorems are obtained in order to characterize the proper efficiency in vector optimization with and without constraints. The usual convexlikeness concepts used in such theorems are weakened through the vector closure.

Suggested Citation

  • M. Adán & V. Novo, 2004. "Proper Efficiency in Vector Optimization on Real Linear Spaces," Journal of Optimization Theory and Applications, Springer, vol. 121(3), pages 515-540, June.
  • Handle: RePEc:spr:joptap:v:121:y:2004:i:3:d:10.1023_b:jota.0000037602.13941.ed
    DOI: 10.1023/B:JOTA.0000037602.13941.ed
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/B:JOTA.0000037602.13941.ed
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/B:JOTA.0000037602.13941.ed?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. B. G. Frenk & G. Kassay, 1999. "On Classes of Generalized Convex Functions, Gordan–Farkas Type Theorems, and Lagrangian Duality," Journal of Optimization Theory and Applications, Springer, vol. 102(2), pages 315-343, August.
    2. G. Y. Chen & W. D. Rong, 1998. "Characterizations of the Benson Proper Efficiency for Nonconvex Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 365-384, August.
    3. Adan, M. & Novo, V., 2003. "Weak efficiency in vector optimization using a closure of algebraic type under cone-convexlikeness," European Journal of Operational Research, Elsevier, vol. 149(3), pages 641-653, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elisabeth Köbis & Markus A. Köbis & Xiaolong Qin, 2020. "An Inequality Approach to Approximate Solutions of Set Optimization Problems in Real Linear Spaces," Mathematics, MDPI, vol. 8(1), pages 1-17, January.
    2. Z. A. Zhou & J. W. Peng, 2012. "Scalarization of Set-Valued Optimization Problems with Generalized Cone Subconvexlikeness in Real Ordered Linear Spaces," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 830-841, September.
    3. M. Chinaie & F. Fakhar & M. Fakhar & H. R. Hajisharifi, 2019. "Weak minimal elements and weak minimal solutions of a nonconvex set-valued optimization problem," Journal of Global Optimization, Springer, vol. 75(1), pages 131-141, September.
    4. Zhi-Ang Zhou & Xin-Min Yang, 2014. "Scalarization of $$\epsilon $$ ϵ -Super Efficient Solutions of Set-Valued Optimization Problems in Real Ordered Linear Spaces," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 680-693, August.
    5. Elham Kiyani & Majid Soleimani-damaneh, 2014. "Algebraic Interior and Separation on Linear Vector Spaces: Some Comments," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 994-998, June.
    6. Christian Günther & Bahareh Khazayel & Christiane Tammer, 2022. "Vector Optimization w.r.t. Relatively Solid Convex Cones in Real Linear Spaces," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 408-442, June.
    7. Vicente Novo & Constantin Zălinescu, 2021. "On Relatively Solid Convex Cones in Real Linear Spaces," Journal of Optimization Theory and Applications, Springer, vol. 188(1), pages 277-290, January.
    8. C. Gutiérrez & L. Huerga & B. Jiménez & V. Novo, 2018. "Approximate solutions of vector optimization problems via improvement sets in real linear spaces," Journal of Global Optimization, Springer, vol. 70(4), pages 875-901, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria C. Maciel & Sandra A. Santos & Graciela N. Sottosanto, 2016. "On the Fritz John saddle point problem for differentiable multiobjective optimization," OPSEARCH, Springer;Operational Research Society of India, vol. 53(4), pages 917-933, December.
    2. Radu Boţ & Sorin-Mihai Grad & Gert Wanka, 2007. "A general approach for studying duality in multiobjective optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(3), pages 417-444, June.
    3. Ovidiu Bagdasar & Nicolae Popovici, 2018. "Unifying local–global type properties in vector optimization," Journal of Global Optimization, Springer, vol. 72(2), pages 155-179, October.
    4. Fabián Flores-Bazán & William Echegaray & Fernando Flores-Bazán & Eladio Ocaña, 2017. "Primal or dual strong-duality in nonconvex optimization and a class of quasiconvex problems having zero duality gap," Journal of Global Optimization, Springer, vol. 69(4), pages 823-845, December.
    5. Frenk, J.B.G. & Kassay, G., 2005. "Lagrangian duality and cone convexlike functions," ERIM Report Series Research in Management ERS-2005-019-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    6. Elham Kiyani & Majid Soleimani-damaneh, 2014. "Algebraic Interior and Separation on Linear Vector Spaces: Some Comments," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 994-998, June.
    7. C. Gutiérrez & L. Huerga & B. Jiménez & V. Novo, 2018. "Approximate solutions of vector optimization problems via improvement sets in real linear spaces," Journal of Global Optimization, Springer, vol. 70(4), pages 875-901, April.
    8. P. H. Sach, 2003. "Nearly Subconvexlike Set-Valued Maps and Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 119(2), pages 335-356, November.
    9. Adan, M. & Novo, V., 2003. "Weak efficiency in vector optimization using a closure of algebraic type under cone-convexlikeness," European Journal of Operational Research, Elsevier, vol. 149(3), pages 641-653, September.
    10. Davide LA TORRE & Nicolae POPOVICI & Matteo ROCCA, 2008. "Scalar characterization of explicitly quasiconvex set-valued maps," Departmental Working Papers 2008-01, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    11. C. Gutiérrez & B. Jiménez & V. Novo, 2006. "On Approximate Efficiency in Multiobjective Programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(1), pages 165-185, August.
    12. Ozdemir, Mujgan S. & Gasimov, Rafail N., 2004. "The analytic hierarchy process and multiobjective 0-1 faculty course assignment," European Journal of Operational Research, Elsevier, vol. 157(2), pages 398-408, September.
    13. Zhiang Zhou & Wenbin Wei & Fei Huang & Kequan Zhao, 2024. "Approximate weak efficiency of the set-valued optimization problem with variable ordering structures," Journal of Combinatorial Optimization, Springer, vol. 48(3), pages 1-13, October.
    14. D. S. Kim & G. M. Lee & P. H. Sach, 2004. "Hartley Proper Efficiency in Multifunction Optimization," Journal of Optimization Theory and Applications, Springer, vol. 120(1), pages 129-145, January.
    15. Vicente Novo & Constantin Zălinescu, 2021. "On Relatively Solid Convex Cones in Real Linear Spaces," Journal of Optimization Theory and Applications, Springer, vol. 188(1), pages 277-290, January.
    16. M. Chinaie & F. Fakhar & M. Fakhar & H. R. Hajisharifi, 2019. "Weak minimal elements and weak minimal solutions of a nonconvex set-valued optimization problem," Journal of Global Optimization, Springer, vol. 75(1), pages 131-141, September.
    17. Fabián Flores-Bazán & Fernando Flores-Bazán & Cristián Vera, 2012. "A complete characterization of strong duality in nonconvex optimization with a single constraint," Journal of Global Optimization, Springer, vol. 53(2), pages 185-201, June.
    18. Z. A. Zhou & J. W. Peng, 2012. "Scalarization of Set-Valued Optimization Problems with Generalized Cone Subconvexlikeness in Real Ordered Linear Spaces," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 830-841, September.
    19. Chuang-Liang Zhang & Nan-jing Huang, 2021. "Set Relations and Weak Minimal Solutions for Nonconvex Set Optimization Problems with Applications," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 894-914, September.
    20. Elisabeth Köbis & Markus A. Köbis & Xiaolong Qin, 2019. "Nonlinear Separation Approach to Inverse Variational Inequalities in Real Linear Spaces," Journal of Optimization Theory and Applications, Springer, vol. 183(1), pages 105-121, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:121:y:2004:i:3:d:10.1023_b:jota.0000037602.13941.ed. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.