IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v134y2007i3d10.1007_s10957-007-9231-z.html
   My bibliography  Save this article

Complementarity Active-Set Algorithm for Mathematical Programming Problems with Equilibrium Constraints

Author

Listed:
  • J. J. Júdice

    (Universidade de Coimbra
    Instituto de Telecomunicações)

  • H. D. Sherali

    (Virginia Polytechnic Institute
    Virginia State University)

  • I. M. Ribeiro

    (Universidade do Porto)

  • A. M. Faustino

    (Universidade do Porto)

Abstract

In this paper, an algorithm for solving a mathematical programming problem with complementarity (or equilibrium) constraints (MPEC) is introduced, which uses the active-set methodology while maintaining the complementarity restrictions throughout the procedure. Finite convergence of the algorithm to a strongly stationary point of the MPEC is established under reasonable hypotheses. The algorithm can be easily implemented by adopting any active-set code for nonlinear programming. Computational experience is included to highlight the efficacy of the proposed method in practice.

Suggested Citation

  • J. J. Júdice & H. D. Sherali & I. M. Ribeiro & A. M. Faustino, 2007. "Complementarity Active-Set Algorithm for Mathematical Programming Problems with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 134(3), pages 467-481, September.
  • Handle: RePEc:spr:joptap:v:134:y:2007:i:3:d:10.1007_s10957-007-9231-z
    DOI: 10.1007/s10957-007-9231-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-007-9231-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-007-9231-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Holger Scheel & Stefan Scholtes, 2000. "Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity," Mathematics of Operations Research, INFORMS, vol. 25(1), pages 1-22, February.
    2. Joaquim Júdice & Ana Faustino & Isabel Ribeiro, 2002. "On the solution of NP-hard linear complementarity problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(1), pages 125-145, June.
    3. M. Seetharama Gowda & Jong-Shi Pang, 1992. "On Solution Stability of the Linear Complementarity Problem," Mathematics of Operations Research, INFORMS, vol. 17(1), pages 77-83, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joaquim Júdice, 2012. "Algorithms for linear programming with linear complementarity constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 4-25, April.
    2. Andreani, R. & Júdice, J.J. & Martínez, J.M. & Martini, T., 2016. "Feasibility problems with complementarity constraints," European Journal of Operational Research, Elsevier, vol. 249(1), pages 41-54.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giandomenico Mastroeni & Letizia Pellegrini & Alberto Peretti, 2021. "Some numerical aspects on a method for solving linear problems with complementarity constraints," Working Papers 16/2021, University of Verona, Department of Economics.
    2. Gui-Hua Lin & Masao Fukushima, 2005. "A Modified Relaxation Scheme for Mathematical Programs with Complementarity Constraints," Annals of Operations Research, Springer, vol. 133(1), pages 63-84, January.
    3. Karan N. Chadha & Ankur A. Kulkarni, 2022. "On independent cliques and linear complementarity problems," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(4), pages 1036-1057, December.
    4. Hoang Ngoc Tuan, 2015. "Boundedness of a Type of Iterative Sequences in Two-Dimensional Quadratic Programming," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 234-245, January.
    5. Xiao Wang & Xinzhen Zhang & Guangming Zhou, 2020. "SDP relaxation algorithms for $$\mathbf {P}(\mathbf {P}_0)$$P(P0)-tensor detection," Computational Optimization and Applications, Springer, vol. 75(3), pages 739-752, April.
    6. Zhang, Yongxiong & Zheng, Hua & Lu, Xiaoping & Vong, Seakweng, 2023. "Modulus-based synchronous multisplitting iteration methods without auxiliary variable for solving vertical linear complementarity problems," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    7. Guo-qiang Wang & Yu-jing Yue & Xin-zhong Cai, 2009. "Weighted-path-following interior-point algorithm to monotone mixed linear complementarity problem," Fuzzy Information and Engineering, Springer, vol. 1(4), pages 435-445, December.
    8. van der Laan, Gerard & Talman, Dolf & Yang, Zaifu, 2011. "Solving discrete systems of nonlinear equations," European Journal of Operational Research, Elsevier, vol. 214(3), pages 493-500, November.
    9. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "Integrated deployment of dedicated lane and roadside unit considering uncertain road capacity under the mixed-autonomy traffic environment," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    10. Andreas Ehrenmann & Karsten Neuhoff, 2009. "A Comparison of Electricity Market Designs in Networks," Operations Research, INFORMS, vol. 57(2), pages 274-286, April.
    11. Gui-Hua Lin & Mei-Ju Luo & Jin Zhang, 2016. "Smoothing and SAA method for stochastic programming problems with non-smooth objective and constraints," Journal of Global Optimization, Springer, vol. 66(3), pages 487-510, November.
    12. Lei Guo & Gui-Hua Lin & Jane J. Ye, 2015. "Solving Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 166(1), pages 234-256, July.
    13. Tao Tan & Yanyan Li & Xingsi Li, 2011. "A Smoothing Method for Zero–One Constrained Extremum Problems," Journal of Optimization Theory and Applications, Springer, vol. 150(1), pages 65-77, July.
    14. Zheng-Hai Huang & Yu-Fan Li & Yong Wang, 2023. "A fixed point iterative method for tensor complementarity problems with the implicit Z-tensors," Journal of Global Optimization, Springer, vol. 86(2), pages 495-520, June.
    15. Christoph Böhringer & Thomas F. Rutherford, 2017. "Paris after Trump: An Inconvenient Insight," CESifo Working Paper Series 6531, CESifo.
    16. S. Dempe & S. Franke, 2016. "On the solution of convex bilevel optimization problems," Computational Optimization and Applications, Springer, vol. 63(3), pages 685-703, April.
    17. G. L. Zhou & L. Caccetta, 2008. "Feasible Semismooth Newton Method for a Class of Stochastic Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 379-392, November.
    18. A. K. Das, 2016. "Properties of some matrix classes based on principal pivot transform," Annals of Operations Research, Springer, vol. 243(1), pages 375-382, August.
    19. A. F. Izmailov & M. V. Solodov, 2002. "The Theory of 2-Regularity for Mappings with Lipschitzian Derivatives and its Applications to Optimality Conditions," Mathematics of Operations Research, INFORMS, vol. 27(3), pages 614-635, August.
    20. Meijuan Shang & Chao Zhang & Naihua Xiu, 2014. "Minimal Zero Norm Solutions of Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 795-814, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:134:y:2007:i:3:d:10.1007_s10957-007-9231-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.