A Modified Relaxation Scheme for Mathematical Programs with Complementarity Constraints
Author
Abstract
Suggested Citation
DOI: 10.1007/s10479-004-5024-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- G.H. Lin & M. Fukushima, 2003. "New Relaxation Method for Mathematical Programs with Complementarity Constraints," Journal of Optimization Theory and Applications, Springer, vol. 118(1), pages 81-116, July.
- X. M. Hu & D. Ralph, 2004. "Convergence of a Penalty Method for Mathematical Programming with Complementarity Constraints," Journal of Optimization Theory and Applications, Springer, vol. 123(2), pages 365-390, November.
- Holger Scheel & Stefan Scholtes, 2000. "Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity," Mathematics of Operations Research, INFORMS, vol. 25(1), pages 1-22, February.
- M. Seetharama Gowda & Jong-Shi Pang, 1992. "On Solution Stability of the Linear Complementarity Problem," Mathematics of Operations Research, INFORMS, vol. 17(1), pages 77-83, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hoai An Thi & Thi Minh Tam Nguyen & Tao Pham Dinh, 2023. "On solving difference of convex functions programs with linear complementarity constraints," Computational Optimization and Applications, Springer, vol. 86(1), pages 163-197, September.
- Martin Branda & Max Bucher & Michal Červinka & Alexandra Schwartz, 2018. "Convergence of a Scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization," Computational Optimization and Applications, Springer, vol. 70(2), pages 503-530, June.
- Meng Xu & Guangmin Wang & Susan Grant-Muller & Ziyou Gao, 2017. "Joint road toll pricing and capacity development in discrete transport network design problem," Transportation, Springer, vol. 44(4), pages 731-752, July.
- Li, Jianling & Huang, Renshuai & Jian, Jinbao, 2015. "A superlinearly convergent QP-free algorithm for mathematical programs with equilibrium constraints," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 885-903.
- Jianzhong Zhang & Liwei Zhang & Xiantao Xiao, 2010. "A Perturbation approach for an inverse quadratic programming problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 72(3), pages 379-404, December.
- Giandomenico Mastroeni & Letizia Pellegrini & Alberto Peretti, 2021. "Some numerical aspects on a method for solving linear problems with complementarity constraints," Working Papers 16/2021, University of Verona, Department of Economics.
- Yogendra Pandey & S. K. Mishra, 2018. "Optimality conditions and duality for semi-infinite mathematical programming problems with equilibrium constraints, using convexificators," Annals of Operations Research, Springer, vol. 269(1), pages 549-564, October.
- Christian Kanzow & Alexandra Schwartz, 2015. "The Price of Inexactness: Convergence Properties of Relaxation Methods for Mathematical Programs with Complementarity Constraints Revisited," Mathematics of Operations Research, INFORMS, vol. 40(2), pages 253-275, February.
- Xide Zhu & Peijun Guo, 2017. "Approaches to four types of bilevel programming problems with nonconvex nonsmooth lower level programs and their applications to newsvendor problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(2), pages 255-275, October.
- Winterfeld, Anton, 2008. "Application of general semi-infinite programming to lapidary cutting problems," European Journal of Operational Research, Elsevier, vol. 191(3), pages 838-854, December.
- Suhong Jiang & Jin Zhang & Caihua Chen & Guihua Lin, 2018. "Smoothing partial exact penalty splitting method for mathematical programs with equilibrium constraints," Journal of Global Optimization, Springer, vol. 70(1), pages 223-236, January.
- H. Z. Luo & X. L. Sun & Y. F. Xu, 2010. "Convergence Properties of Modified and Partially-Augmented Lagrangian Methods for Mathematical Programs with Complementarity Constraints," Journal of Optimization Theory and Applications, Springer, vol. 145(3), pages 489-506, June.
- Jia Wu & Liwei Zhang & Yi Zhang, 2013. "A smoothing Newton method for mathematical programs governed by second-order cone constrained generalized equations," Journal of Global Optimization, Springer, vol. 55(2), pages 359-385, February.
- Lei Guo & Gui-Hua Lin & Jane J. Ye, 2013. "Second-Order Optimality Conditions for Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 33-64, July.
- Na Xu & Xide Zhu & Li-Ping Pang & Jian Lv, 2018. "Improved Convergence Properties of the Relaxation Schemes of Kadrani et al. and Kanzow and Schwartz for MPEC," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(01), pages 1-20, February.
- Jean-Pierre Dussault & Mounir Haddou & Abdeslam Kadrani & Tangi Migot, 2020. "On Approximate Stationary Points of the Regularized Mathematical Program with Complementarity Constraints," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 504-522, August.
- Gemayqzel Bouza & Georg Still, 2007. "Mathematical Programs with Complementarity Constraints: Convergence Properties of a Smoothing Method," Mathematics of Operations Research, INFORMS, vol. 32(2), pages 467-483, May.
- Christian Kanzow & Alexandra Schwartz, 2014. "Convergence properties of the inexact Lin-Fukushima relaxation method for mathematical programs with complementarity constraints," Computational Optimization and Applications, Springer, vol. 59(1), pages 249-262, October.
- Wang, Guangmin & Gao, Ziyou & Xu, Meng & Sun, Huijun, 2014. "Joint link-based credit charging and road capacity improvement in continuous network design problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 1-14.
- O. Stein & A. Winterfeld, 2010. "Feasible Method for Generalized Semi-Infinite Programming," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 419-443, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Giandomenico Mastroeni & Letizia Pellegrini & Alberto Peretti, 2021. "Some numerical aspects on a method for solving linear problems with complementarity constraints," Working Papers 16/2021, University of Verona, Department of Economics.
- Filippo Pecci & Edo Abraham & Ivan Stoianov, 2017. "Penalty and relaxation methods for the optimal placement and operation of control valves in water supply networks," Computational Optimization and Applications, Springer, vol. 67(1), pages 201-223, May.
- Daniel Ralph & Oliver Stein, 2011. "The C-Index: A New Stability Concept for Quadratic Programs with Complementarity Constraints," Mathematics of Operations Research, INFORMS, vol. 36(3), pages 504-526, August.
- Hu, X. & Ralph, R., 2006. "Using EPECs to model bilevel games in restructured electricity markets with locational prices," Cambridge Working Papers in Economics 0619, Faculty of Economics, University of Cambridge.
- H. Z. Luo & X. L. Sun & Y. F. Xu, 2010. "Convergence Properties of Modified and Partially-Augmented Lagrangian Methods for Mathematical Programs with Complementarity Constraints," Journal of Optimization Theory and Applications, Springer, vol. 145(3), pages 489-506, June.
- Hoai An Thi & Thi Minh Tam Nguyen & Tao Pham Dinh, 2023. "On solving difference of convex functions programs with linear complementarity constraints," Computational Optimization and Applications, Springer, vol. 86(1), pages 163-197, September.
- Lei Guo & Gui-Hua Lin, 2013. "Notes on Some Constraint Qualifications for Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 156(3), pages 600-616, March.
- Suhong Jiang & Jin Zhang & Caihua Chen & Guihua Lin, 2018. "Smoothing partial exact penalty splitting method for mathematical programs with equilibrium constraints," Journal of Global Optimization, Springer, vol. 70(1), pages 223-236, January.
- Lei Guo & Gui-Hua Lin & Jane J. Ye, 2013. "Second-Order Optimality Conditions for Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 33-64, July.
- J. J. Júdice & H. D. Sherali & I. M. Ribeiro & A. M. Faustino, 2007. "Complementarity Active-Set Algorithm for Mathematical Programming Problems with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 134(3), pages 467-481, September.
- Joaquim Júdice, 2012. "Algorithms for linear programming with linear complementarity constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 4-25, April.
- Nie, Pu-yan & Chen, Li-hua & Fukushima, Masao, 2006. "Dynamic programming approach to discrete time dynamic feedback Stackelberg games with independent and dependent followers," European Journal of Operational Research, Elsevier, vol. 169(1), pages 310-328, February.
- Andreani, R. & Júdice, J.J. & Martínez, J.M. & Martini, T., 2016. "Feasibility problems with complementarity constraints," European Journal of Operational Research, Elsevier, vol. 249(1), pages 41-54.
- Patriksson, Michael, 2008. "On the applicability and solution of bilevel optimization models in transportation science: A study on the existence, stability and computation of optimal solutions to stochastic mathematical programs," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 843-860, December.
- S A Gabriel & Y Shim & A J Conejo & S de la Torre & R García-Bertrand, 2010. "A Benders decomposition method for discretely-constrained mathematical programs with equilibrium constraints," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(9), pages 1404-1419, September.
- Christian Kanzow & Alexandra Schwartz, 2015. "The Price of Inexactness: Convergence Properties of Relaxation Methods for Mathematical Programs with Complementarity Constraints Revisited," Mathematics of Operations Research, INFORMS, vol. 40(2), pages 253-275, February.
- H. Luo & X. Sun & Y. Xu & H. Wu, 2010. "On the convergence properties of modified augmented Lagrangian methods for mathematical programming with complementarity constraints," Journal of Global Optimization, Springer, vol. 46(2), pages 217-232, February.
- Jian Yao & Ilan Adler & Shmuel S. Oren, 2008. "Modeling and Computing Two-Settlement Oligopolistic Equilibrium in a Congested Electricity Network," Operations Research, INFORMS, vol. 56(1), pages 34-47, February.
- Gemayqzel Bouza & Georg Still, 2007. "Mathematical Programs with Complementarity Constraints: Convergence Properties of a Smoothing Method," Mathematics of Operations Research, INFORMS, vol. 32(2), pages 467-483, May.
- Xinmin Hu & Daniel Ralph, 2007. "Using EPECs to Model Bilevel Games in Restructured Electricity Markets with Locational Prices," Operations Research, INFORMS, vol. 55(5), pages 809-827, October.
More about this item
Keywords
mathematical program with complementarity constraints; (MPEC-)linear independence constraint qualification; nondegeneracy; (B-; M-; C-)stationarity; weak second-order necessary conditions; upper level strict complementarity;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:133:y:2005:i:1:p:63-84:10.1007/s10479-004-5024-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.