IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v353y2019icp396-405.html
   My bibliography  Save this article

A direct preconditioned modulus-based iteration method for solving nonlinear complementarity problems of H-matrices

Author

Listed:
  • Zheng, Hua
  • Vong, Seakweng
  • Liu, Ling

Abstract

In this paper, we establish a direct preconditioned modulus-based iteration method for solving a class of nonlinear complementarity problems with the system matrix being an H-matrix. The convergence theorems of the proposed method are given, which generalize and improve the existing ones. Numerical examples show that the proposed method is efficient.

Suggested Citation

  • Zheng, Hua & Vong, Seakweng & Liu, Ling, 2019. "A direct preconditioned modulus-based iteration method for solving nonlinear complementarity problems of H-matrices," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 396-405.
  • Handle: RePEc:eee:apmaco:v:353:y:2019:i:c:p:396-405
    DOI: 10.1016/j.amc.2019.02.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319301134
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.02.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wen, Baolian & Zheng, Hua & Li, Wen & Peng, Xiaofei, 2018. "The relaxation modulus-based matrix splitting iteration method for solving linear complementarity problems of positive definite matrices," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 349-357.
    2. Xia, Zechen & Li, Chenliang, 2015. "Modulus-based matrix splitting iteration methods for a class of nonlinear complementarity problem," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 34-42.
    3. Li-Li Zhang, 2014. "Two-Stage Multisplitting Iteration Methods Using Modulus-Based Matrix Splitting as Inner Iteration for Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 160(1), pages 189-203, January.
    4. M. Seetharama Gowda & Jong-Shi Pang, 1992. "On Solution Stability of the Linear Complementarity Problem," Mathematics of Operations Research, INFORMS, vol. 17(1), pages 77-83, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Li-Li, 2021. "A modulus-based multigrid method for nonlinear complementarity problems with application to free boundary problems with nonlinear source terms," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    2. Zheng, Hua & Vong, Seakweng, 2021. "On the modulus-based successive overrelaxation iteration method for horizontal linear complementarity problems arising from hydrodynamic lubrication," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    3. Baohua Huang & Wen Li, 2023. "A smoothing Newton method based on the modulus equation for a class of weakly nonlinear complementarity problems," Computational Optimization and Applications, Springer, vol. 86(1), pages 345-381, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hua Zheng & Ling Liu, 2019. "The Sign-Based Methods for Solving a Class of Nonlinear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 180(2), pages 480-499, February.
    2. Zhang, Yongxiong & Zheng, Hua & Lu, Xiaoping & Vong, Seakweng, 2023. "Modulus-based synchronous multisplitting iteration methods without auxiliary variable for solving vertical linear complementarity problems," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    3. Bharat Kumar & Deepmala & A. Dutta & A. K. Das, 2023. "More on matrix splitting modulus-based iterative methods for solving linear complementarity problem," OPSEARCH, Springer;Operational Research Society of India, vol. 60(2), pages 1003-1020, June.
    4. Guo, Wenxiu & Zheng, Hua & Lu, Xiaoping & Zhang, Yongxiong, 2024. "On the two-stage multisplitting iteration methods for linear complementarity problems," Applied Mathematics and Computation, Elsevier, vol. 475(C).
    5. Ping-Fan Dai & Shi-Liang Wu, 2022. "The GUS-Property and Modulus-Based Methods for Tensor Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 976-1006, December.
    6. Karan N. Chadha & Ankur A. Kulkarni, 2022. "On independent cliques and linear complementarity problems," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(4), pages 1036-1057, December.
    7. van der Laan, G. & Talman, A.J.J. & Yang, Z.F., 2005. "Computing Integral Solutions of Complementarity Problems," Discussion Paper 2005-5, Tilburg University, Center for Economic Research.
    8. Hoang Ngoc Tuan, 2015. "Boundedness of a Type of Iterative Sequences in Two-Dimensional Quadratic Programming," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 234-245, January.
    9. Xiao Wang & Xinzhen Zhang & Guangming Zhou, 2020. "SDP relaxation algorithms for $$\mathbf {P}(\mathbf {P}_0)$$P(P0)-tensor detection," Computational Optimization and Applications, Springer, vol. 75(3), pages 739-752, April.
    10. Guo-qiang Wang & Yu-jing Yue & Xin-zhong Cai, 2009. "Weighted-path-following interior-point algorithm to monotone mixed linear complementarity problem," Fuzzy Information and Engineering, Springer, vol. 1(4), pages 435-445, December.
    11. van der Laan, Gerard & Talman, Dolf & Yang, Zaifu, 2011. "Solving discrete systems of nonlinear equations," European Journal of Operational Research, Elsevier, vol. 214(3), pages 493-500, November.
    12. Baohua Huang & Wen Li, 2023. "A smoothing Newton method based on the modulus equation for a class of weakly nonlinear complementarity problems," Computational Optimization and Applications, Springer, vol. 86(1), pages 345-381, September.
    13. E. Demidenko, 2008. "Criteria for Unconstrained Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 136(3), pages 375-395, March.
    14. R. B. Bapat & S. K. Neogy, 2016. "On a quadratic programming problem involving distances in trees," Annals of Operations Research, Springer, vol. 243(1), pages 365-373, August.
    15. Zheng-Hai Huang & Yu-Fan Li & Yong Wang, 2023. "A fixed point iterative method for tensor complementarity problems with the implicit Z-tensors," Journal of Global Optimization, Springer, vol. 86(2), pages 495-520, June.
    16. G. Isac & S. Z. Németh, 2008. "REFE-Acceptable Mappings: Necessary and Sufficient Condition for the Nonexistence of a Regular Exceptional Family of Elements," Journal of Optimization Theory and Applications, Springer, vol. 137(3), pages 507-520, June.
    17. Christoph Böhringer & Thomas F. Rutherford, 2017. "Paris after Trump: An Inconvenient Insight," CESifo Working Paper Series 6531, CESifo.
    18. Songfeng Zheng, 2021. "KLERC: kernel Lagrangian expectile regression calculator," Computational Statistics, Springer, vol. 36(1), pages 283-311, March.
    19. S A Gabriel & Y Shim & A J Conejo & S de la Torre & R García-Bertrand, 2010. "A Benders decomposition method for discretely-constrained mathematical programs with equilibrium constraints," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(9), pages 1404-1419, September.
    20. Rahul Savani & Bernhard von Stengel, 2016. "Unit vector games," International Journal of Economic Theory, The International Society for Economic Theory, vol. 12(1), pages 7-27, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:353:y:2019:i:c:p:396-405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.