IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v66y2016i3d10.1007_s10898-016-0413-9.html
   My bibliography  Save this article

Smoothing and SAA method for stochastic programming problems with non-smooth objective and constraints

Author

Listed:
  • Gui-Hua Lin

    (Shanghai University)

  • Mei-Ju Luo

    (Liaoning University)

  • Jin Zhang

    (Hong Kong Baptist University)

Abstract

We consider a stochastic non-smooth programming problem with equality, inequality and abstract constraints, which is a generalization of the problem studied by Xu and Zhang (Math Program 119:371–401, 2009) where only an abstract constraint is considered. We employ a smoothing technique to deal with the non-smoothness and use the sample average approximation techniques to cope with the mathematical expectations. Then, we investigate the convergence properties of the approximation problems. We further apply the approach to solve the stochastic mathematical programs with equilibrium constraints. In addition, we give an illustrative example in economics to show the applicability of proposed approach.

Suggested Citation

  • Gui-Hua Lin & Mei-Ju Luo & Jin Zhang, 2016. "Smoothing and SAA method for stochastic programming problems with non-smooth objective and constraints," Journal of Global Optimization, Springer, vol. 66(3), pages 487-510, November.
  • Handle: RePEc:spr:jglopt:v:66:y:2016:i:3:d:10.1007_s10898-016-0413-9
    DOI: 10.1007/s10898-016-0413-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-016-0413-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-016-0413-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Holger Scheel & Stefan Scholtes, 2000. "Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity," Mathematics of Operations Research, INFORMS, vol. 25(1), pages 1-22, February.
    2. J. J. Ye & X. Y. Ye, 1997. "Necessary Optimality Conditions for Optimization Problems with Variational Inequality Constraints," Mathematics of Operations Research, INFORMS, vol. 22(4), pages 977-997, November.
    3. Alexander, S. & Coleman, T.F. & Li, Y., 2006. "Minimizing CVaR and VaR for a portfolio of derivatives," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 583-605, February.
    4. D. Ralph & H. Xu, 2005. "Implicit Smoothing and Its Application to Optimization with Piecewise Smooth Equality Constraints1," Journal of Optimization Theory and Applications, Springer, vol. 124(3), pages 673-699, March.
    5. Gui-Hua Lin & Huifu Xu & Masao Fukushima, 2008. "Monte Carlo and quasi-Monte Carlo sampling methods for a class of stochastic mathematical programs with equilibrium constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 67(3), pages 423-441, June.
    6. N. D. Yen, 1997. "Stability of the Solution Set of Perturbed Nonsmooth Inequality Systems and Application," Journal of Optimization Theory and Applications, Springer, vol. 93(1), pages 199-225, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Min Li & Chao Zhang, 2020. "Two-Stage Stochastic Variational Inequality Arising from Stochastic Programming," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 324-343, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Guo & Gui-Hua Lin & Jane J. Ye, 2015. "Solving Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 166(1), pages 234-256, July.
    2. Lei Guo & Gui-Hua Lin, 2013. "Notes on Some Constraint Qualifications for Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 156(3), pages 600-616, March.
    3. Suhong Jiang & Jin Zhang & Caihua Chen & Guihua Lin, 2018. "Smoothing partial exact penalty splitting method for mathematical programs with equilibrium constraints," Journal of Global Optimization, Springer, vol. 70(1), pages 223-236, January.
    4. Lei Guo & Gui-Hua Lin & Jane J. Ye, 2013. "Second-Order Optimality Conditions for Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 33-64, July.
    5. Jane J. Ye & Jin Zhang, 2014. "Enhanced Karush–Kuhn–Tucker Conditions for Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 777-794, December.
    6. Hongxia Yin & Jianzhong Zhang, 2006. "Global Convergence of a Smooth Approximation Method for Mathematical Programs with Complementarity Constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(2), pages 255-269, October.
    7. Christian Kanzow & Alexandra Schwartz, 2014. "Convergence properties of the inexact Lin-Fukushima relaxation method for mathematical programs with complementarity constraints," Computational Optimization and Applications, Springer, vol. 59(1), pages 249-262, October.
    8. C. Cromvik & M. Patriksson, 2010. "On the Robustness of Global Optima and Stationary Solutions to Stochastic Mathematical Programs with Equilibrium Constraints, Part 1: Theory," Journal of Optimization Theory and Applications, Springer, vol. 144(3), pages 461-478, March.
    9. Yongchao Liu & Huifu Xu & Gui-Hua Lin, 2012. "Stability Analysis of One Stage Stochastic Mathematical Programs with Complementarity Constraints," Journal of Optimization Theory and Applications, Springer, vol. 152(2), pages 537-555, February.
    10. Christian Kanzow & Alexandra Schwartz, 2015. "The Price of Inexactness: Convergence Properties of Relaxation Methods for Mathematical Programs with Complementarity Constraints Revisited," Mathematics of Operations Research, INFORMS, vol. 40(2), pages 253-275, February.
    11. Jean-Pierre Dussault & Mounir Haddou & Abdeslam Kadrani & Tangi Migot, 2020. "On Approximate Stationary Points of the Regularized Mathematical Program with Complementarity Constraints," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 504-522, August.
    12. Nguyen Huy Chieu & Gue Myung Lee, 2013. "A Relaxed Constant Positive Linear Dependence Constraint Qualification for Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 11-32, July.
    13. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    14. Yongchao Liu & Huifu Xu & Jane J. Ye, 2011. "Penalized Sample Average Approximation Methods for Stochastic Mathematical Programs with Complementarity Constraints," Mathematics of Operations Research, INFORMS, vol. 36(4), pages 670-694, November.
    15. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "Integrated deployment of dedicated lane and roadside unit considering uncertain road capacity under the mixed-autonomy traffic environment," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    16. Andreas Ehrenmann & Karsten Neuhoff, 2009. "A Comparison of Electricity Market Designs in Networks," Operations Research, INFORMS, vol. 57(2), pages 274-286, April.
    17. Ken Kobayashi & Yuichi Takano & Kazuhide Nakata, 2021. "Bilevel cutting-plane algorithm for cardinality-constrained mean-CVaR portfolio optimization," Journal of Global Optimization, Springer, vol. 81(2), pages 493-528, October.
    18. Tao Tan & Yanyan Li & Xingsi Li, 2011. "A Smoothing Method for Zero–One Constrained Extremum Problems," Journal of Optimization Theory and Applications, Springer, vol. 150(1), pages 65-77, July.
    19. Songjiao Chen & William Wilson & Ryan Larsen & Bruce Dahl, 2016. "Risk Management for Grain Processors and “Copulas”," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 64(2), pages 365-382, June.
    20. S. Dempe & S. Franke, 2016. "On the solution of convex bilevel optimization problems," Computational Optimization and Applications, Springer, vol. 63(3), pages 685-703, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:66:y:2016:i:3:d:10.1007_s10898-016-0413-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.