IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v50y2002i5p904-915.html
   My bibliography  Save this article

A Primal-Dual Decomposition-Based Interior Point Approach to Two-Stage Stochastic Linear Programming

Author

Listed:
  • Arjan Berkelaar

    (Econometric Institute, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands)

  • Cees Dert

    (ABN-AMRO Asset Management, and Faculty of Economic Sciences and Econometrics, Free University of Amsterdam, The Netherlands)

  • Bart Oldenkamp

    (ABN-AMRO Asset Management, and Econometric Institute, Erasmus University Rotterdam, The Netherlands)

  • Shuzhong Zhang

    (Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Shatin, Hong Kong)

Abstract

Decision making under uncertainty is a challenge faced by many decision makers. Stochastic programming is a major tool developed to deal with optimization with uncertainties which has found applications in, e.g., finance, such as asset--liability and bond--portfolio management. Computationally, however, many models in stochastic programming remain unsolvable because of overwhelming dimensionality. For a model to be well solvable, its special structure must be explored. Most of the solution methods are based on decomposing the data. In this paper we propose a new decomposition approach for two-stage stochastic programming, based on a direct application of the path-following method combined with the homogeneous self-dual technique. Numerical experiments show that our decomposition algorithm is very efficient for solving stochastic programs. In particular, we apply our decomposition method to a two-period portfolio selection problem using options on a stock index. In this model the investor can invest in a money-market account, a stock index, and European options on this index with different maturities. We experiment with our model with market prices of options on the S&P500.

Suggested Citation

  • Arjan Berkelaar & Cees Dert & Bart Oldenkamp & Shuzhong Zhang, 2002. "A Primal-Dual Decomposition-Based Interior Point Approach to Two-Stage Stochastic Linear Programming," Operations Research, INFORMS, vol. 50(5), pages 904-915, October.
  • Handle: RePEc:inm:oropre:v:50:y:2002:i:5:p:904-915
    DOI: 10.1287/opre.50.5.904.360
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.50.5.904.360
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.50.5.904.360?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John R. Birge & Liqun Qi, 1988. "Computing Block-Angular Karmarkar Projections with Applications to Stochastic Programming," Management Science, INFORMS, vol. 34(12), pages 1472-1479, December.
    2. Cees Dert & Bart Oldenkamp, 2000. "Optimal Guaranteed Return Portfolios and the Casino Effect," Operations Research, INFORMS, vol. 48(5), pages 768-775, October.
    3. Luo, Z-Q. & Sturm, J.F. & Zhang, S., 1996. "Duality and Self-Duality for Conic Convex Programming," Econometric Institute Research Papers EI 9620-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. Irvin J. Lustig & John M. Mulvey & Tamra J. Carpenter, 1991. "Formulating Two-Stage Stochastic Programs for Interior Point Methods," Operations Research, INFORMS, vol. 39(5), pages 757-770, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel, Angel Víctor de, 2004. "On the relationship between bilevel decomposition algorithms and direct interior-point methods," DES - Working Papers. Statistics and Econometrics. WS ws042509, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Arjen Siegmann & André Lucas, 2005. "Discrete-Time Financial Planning Models Under Loss-Averse Preferences," Operations Research, INFORMS, vol. 53(3), pages 403-414, June.
    3. Ankur Kulkarni & Uday Shanbhag, 2012. "Recourse-based stochastic nonlinear programming: properties and Benders-SQP algorithms," Computational Optimization and Applications, Springer, vol. 51(1), pages 77-123, January.
    4. Kuang-Yu Ding & Xin-Yee Lam & Kim-Chuan Toh, 2023. "On proximal augmented Lagrangian based decomposition methods for dual block-angular convex composite programming problems," Computational Optimization and Applications, Springer, vol. 86(1), pages 117-161, September.
    5. Jianfeng Liang & Shuzhong Zhang & Duan Li, 2008. "Optioned Portfolio Selection: Models And Analysis," Mathematical Finance, Wiley Blackwell, vol. 18(4), pages 569-593, October.
    6. X. W. Liu & M. Fukushima, 2006. "Parallelizable Preprocessing Method for Multistage Stochastic Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 131(3), pages 327-346, December.
    7. Jie Sun & Xinwei Liu, 2006. "Scenario Formulation of Stochastic Linear Programs and the Homogeneous Self-Dual Interior-Point Method," INFORMS Journal on Computing, INFORMS, vol. 18(4), pages 444-454, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Gondzio, 1994. "Preconditioned Conjugate Gradients in an Interior Point Method for Two-stage Stochastic Programming," Working Papers wp94130, International Institute for Applied Systems Analysis.
    2. Meszaros, Csaba, 1997. "The augmented system variant of IPMs in two-stage stochastic linear programming computation," European Journal of Operational Research, Elsevier, vol. 101(2), pages 317-327, September.
    3. Diana Barro & Elio Canestrelli, 2005. "Time and nodal decomposition with implicit non-anticipativity constraints in dynamic portfolio optimization," GE, Growth, Math methods 0510011, University Library of Munich, Germany.
    4. Berkelaar, A.B. & Dert, C.L. & Oldenkamp, K.P.B. & Zhang, S., 1999. "A primal-dual decomposition based interior point approach to two-stage stochastic linear programming," Econometric Institute Research Papers EI 9918-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. A. Ruszczynski, 1993. "Interior Point Methods in Stochastic Programming," Working Papers wp93008, International Institute for Applied Systems Analysis.
    6. X. W. Liu & M. Fukushima, 2006. "Parallelizable Preprocessing Method for Multistage Stochastic Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 131(3), pages 327-346, December.
    7. P. Beraldi & D. Conforti & A. Violi, 2009. "SICOpt: Solution Approach for Nonlinear Integer Stochastic Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 143(1), pages 17-36, October.
    8. Mulvey, John M. & Rosenbaum, Daniel P. & Shetty, Bala, 1997. "Strategic financial risk management and operations research," European Journal of Operational Research, Elsevier, vol. 97(1), pages 1-16, February.
    9. Berkelaar, Arjan & Dert, Cees & Oldenkamp, Bart, 1999. "A primal-dual decompsition-based interior point approach to two-stage stochastic linear programming," Serie Research Memoranda 0026, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    10. Hong‐Chih Huang, 2010. "Optimal Multiperiod Asset Allocation: Matching Assets to Liabilities in a Discrete Model," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(2), pages 451-472, June.
    11. Castro, Jordi & Escudero, Laureano F. & Monge, Juan F., 2023. "On solving large-scale multistage stochastic optimization problems with a new specialized interior-point approach," European Journal of Operational Research, Elsevier, vol. 310(1), pages 268-285.
    12. G. Y. Zhao, 1999. "Interior-Point Methods with Decomposition for Solving Large-Scale Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 102(1), pages 169-192, July.
    13. Jacek Gondzio & Andreas Grothey, 2009. "Exploiting structure in parallel implementation of interior point methods for optimization," Computational Management Science, Springer, vol. 6(2), pages 135-160, May.
    14. Valle, C.A. & Meade, N. & Beasley, J.E., 2014. "Absolute return portfolios," Omega, Elsevier, vol. 45(C), pages 20-41.
    15. A. Ruszczynski, 1994. "On Augmented Lagrangian Decomposition Methods For Multistage Stochastic Programs," Working Papers wp94005, International Institute for Applied Systems Analysis.
    16. Sturm, Jos F. & Zhang, Shuzhong, 2000. "On weighted centers for semidefinite programming," European Journal of Operational Research, Elsevier, vol. 126(2), pages 391-407, October.
    17. Suvrajeet Sen & Lihua Yu & Talat Genc, 2006. "A Stochastic Programming Approach to Power Portfolio Optimization," Operations Research, INFORMS, vol. 54(1), pages 55-72, February.
    18. Maqsood, Imran & Huang, Guo H. & Scott Yeomans, Julian, 2005. "An interval-parameter fuzzy two-stage stochastic program for water resources management under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 208-225, November.
    19. Cosmin Petra & Mihai Anitescu, 2012. "A preconditioning technique for Schur complement systems arising in stochastic optimization," Computational Optimization and Applications, Springer, vol. 52(2), pages 315-344, June.
    20. Jacek Gondzio & Roy Kouwenberg, 2001. "High-Performance Computing for Asset-Liability Management," Operations Research, INFORMS, vol. 49(6), pages 879-891, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:50:y:2002:i:5:p:904-915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.