IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpge/0510011.html
   My bibliography  Save this paper

Time and nodal decomposition with implicit non-anticipativity constraints in dynamic portfolio optimization

Author

Listed:
  • Diana Barro

    (Department of Applied Mathematics - University of Venice)

  • Elio Canestrelli

    (Department of Applied Mathematics - University of Venice)

Abstract

We propose a decomposition method for the solution of a dynamic portfolio optimization problem which fits the formulation of a multistage stochastic programming problem. The method allows to obtain time and nodal decomposition of the problem in its arborescent formulation applying a discrete version of Pontryagin Maximum Principle. The solution of the decomposed problems is coordinated through a fixed- point weighted iterative scheme. The introduction of an optimization step in the choice of the weights at each iteration allows to solve the original problem in a very efficient way.

Suggested Citation

  • Diana Barro & Elio Canestrelli, 2005. "Time and nodal decomposition with implicit non-anticipativity constraints in dynamic portfolio optimization," GE, Growth, Math methods 0510011, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpge:0510011
    Note: Type of Document - pdf; pages: 18
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/ge/papers/0510/0510011.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Diana Barro & Elio Canestrelli, 2009. "Tracking error: a multistage portfolio model," Annals of Operations Research, Springer, vol. 165(1), pages 47-66, January.
    2. John R. Birge & Liqun Qi, 1988. "Computing Block-Angular Karmarkar Projections with Applications to Stochastic Programming," Management Science, INFORMS, vol. 34(12), pages 1472-1479, December.
    3. A. Ruszczynski, 1994. "On Augmented Lagrangian Decomposition Methods For Multistage Stochastic Programs," Working Papers wp94005, International Institute for Applied Systems Analysis.
    4. Barro, Diana & Canestrelli, Elio, 2005. "Dynamic portfolio optimization: Time decomposition using the Maximum Principle with a scenario approach," European Journal of Operational Research, Elsevier, vol. 163(1), pages 217-229, May.
    5. Irvin J. Lustig & John M. Mulvey & Tamra J. Carpenter, 1991. "Formulating Two-Stage Stochastic Programs for Interior Point Methods," Operations Research, INFORMS, vol. 39(5), pages 757-770, October.
    6. Julia L. Higle & Suvrajeet Sen, 1991. "Stochastic Decomposition: An Algorithm for Two-Stage Linear Programs with Recourse," Mathematics of Operations Research, INFORMS, vol. 16(3), pages 650-669, August.
    7. M. I. Kusy & W. T. Ziemba, 1986. "A Bank Asset and Liability Management Model," Operations Research, INFORMS, vol. 34(3), pages 356-376, June.
    8. Soren S. Nielsen & Stavros A. Zenios, 1993. "A Massively Parallel Algorithm for Nonlinear Stochastic Network Problems," Operations Research, INFORMS, vol. 41(2), pages 319-337, April.
    9. David R. Cariño & Terry Kent & David H. Myers & Celine Stacy & Mike Sylvanus & Andrew L. Turner & Kouji Watanabe & William T. Ziemba, 1994. "The Russell-Yasuda Kasai Model: An Asset/Liability Model for a Japanese Insurance Company Using Multistage Stochastic Programming," Interfaces, INFORMS, vol. 24(1), pages 29-49, February.
    10. John M. Mulvey & Andrzej Ruszczyński, 1995. "A New Scenario Decomposition Method for Large-Scale Stochastic Optimization," Operations Research, INFORMS, vol. 43(3), pages 477-490, June.
    11. Vladimirou, Hercules, 1998. "Computational assessment of distributed decomposition methods for stochastic linear programs," European Journal of Operational Research, Elsevier, vol. 108(3), pages 653-670, August.
    12. John R. Birge, 1985. "Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs," Operations Research, INFORMS, vol. 33(5), pages 989-1007, October.
    13. Stephen P. Bradley & Dwight B. Crane, 1972. "A Dynamic Model for Bond Portfolio Management," Management Science, INFORMS, vol. 19(2), pages 139-151, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diana Barro & Elio Canestrelli, 2011. "Combining stochastic programming and optimal control to solve multistage stochastic optimization problems," Working Papers 2011_24, Department of Economics, University of Venice "Ca' Foscari", revised 2011.
    2. Diana Barro & Elio Canestrelli, 2016. "Combining stochastic programming and optimal control to decompose multistage stochastic optimization problems," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(3), pages 711-742, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacek Gondzio & Roy Kouwenberg, 2001. "High-Performance Computing for Asset-Liability Management," Operations Research, INFORMS, vol. 49(6), pages 879-891, December.
    2. Mulvey, John M. & Rosenbaum, Daniel P. & Shetty, Bala, 1997. "Strategic financial risk management and operations research," European Journal of Operational Research, Elsevier, vol. 97(1), pages 1-16, February.
    3. J. Gondzio, 1994. "Preconditioned Conjugate Gradients in an Interior Point Method for Two-stage Stochastic Programming," Working Papers wp94130, International Institute for Applied Systems Analysis.
    4. Diana Barro & Elio Canestrelli, 2011. "Combining stochastic programming and optimal control to solve multistage stochastic optimization problems," Working Papers 2011_24, Department of Economics, University of Venice "Ca' Foscari", revised 2011.
    5. Sodhi, ManMohan S. & Tang, Christopher S., 2009. "Modeling supply-chain planning under demand uncertainty using stochastic programming: A survey motivated by asset-liability management," International Journal of Production Economics, Elsevier, vol. 121(2), pages 728-738, October.
    6. Jacek Gondzio & Andreas Grothey, 2007. "Parallel interior-point solver for structured quadratic programs: Application to financial planning problems," Annals of Operations Research, Springer, vol. 152(1), pages 319-339, July.
    7. Klaassen, Pieter, 1997. "Solving stochastic programming models for asset/liability management using iterative disaggregation," Serie Research Memoranda 0010, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    8. Pieter Klaassen, 1998. "Financial Asset-Pricing Theory and Stochastic Programming Models for Asset/Liability Management: A Synthesis," Management Science, INFORMS, vol. 44(1), pages 31-48, January.
    9. Julia Higle & Suvrajeet Sen, 2006. "Multistage stochastic convex programs: Duality and its implications," Annals of Operations Research, Springer, vol. 142(1), pages 129-146, February.
    10. Messina, E. & Mitra, G., 1997. "Modelling and analysis of multistage stochastic programming problems: A software environment," European Journal of Operational Research, Elsevier, vol. 101(2), pages 343-359, September.
    11. Amy V. Puelz, 2002. "A Stochastic Convergence Model for Portfolio Selection," Operations Research, INFORMS, vol. 50(3), pages 462-476, June.
    12. Barro, Diana & Canestrelli, Elio, 2005. "Dynamic portfolio optimization: Time decomposition using the Maximum Principle with a scenario approach," European Journal of Operational Research, Elsevier, vol. 163(1), pages 217-229, May.
    13. Sebastiano Vitali & Vittorio Moriggia, 2021. "Pension fund management with investment certificates and stochastic dominance," Annals of Operations Research, Springer, vol. 299(1), pages 273-292, April.
    14. Diana Barro & Elio Canestrelli, 2016. "Combining stochastic programming and optimal control to decompose multistage stochastic optimization problems," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(3), pages 711-742, July.
    15. ManMohan S. Sodhi, 2005. "LP Modeling for Asset-Liability Management: A Survey of Choices and Simplifications," Operations Research, INFORMS, vol. 53(2), pages 181-196, April.
    16. David R. Cariño & William T. Ziemba, 1998. "Formulation of the Russell-Yasuda Kasai Financial Planning Model," Operations Research, INFORMS, vol. 46(4), pages 433-449, August.
    17. Birge, John R. & Júdice, Pedro, 2013. "Long-term bank balance sheet management: Estimation and simulation of risk-factors," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 4711-4720.
    18. Geyer, Alois & Hanke, Michael & Weissensteiner, Alex, 2010. "No-arbitrage conditions, scenario trees, and multi-asset financial optimization," European Journal of Operational Research, Elsevier, vol. 206(3), pages 609-613, November.
    19. X. W. Liu & M. Fukushima, 2006. "Parallelizable Preprocessing Method for Multistage Stochastic Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 131(3), pages 327-346, December.
    20. Moriggia, Vittorio & Kopa, Miloš & Vitali, Sebastiano, 2019. "Pension fund management with hedging derivatives, stochastic dominance and nodal contamination," Omega, Elsevier, vol. 87(C), pages 127-141.

    More about this item

    Keywords

    Stochastic programming; Discrete time optimal control problem; Iterative scheme; Portfolio optimization;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpge:0510011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.