Optimization of injection molding process using multi-objective bayesian optimization and constrained generative inverse design networks
Author
Abstract
Suggested Citation
DOI: 10.1007/s10845-022-02018-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhiwei Feng & Qingbin Zhang & Qingfu Zhang & Qiangang Tang & Tao Yang & Yang Ma, 2015. "A multiobjective optimization based framework to balance the global exploration and local exploitation in expensive optimization," Journal of Global Optimization, Springer, vol. 61(4), pages 677-694, April.
- Hengyuan Ma & Wei Liu & Xionghui Zhou & Qiang Niu & Chuipin Kong, 2020. "An effective and automatic approach for parameters optimization of complex end milling process based on virtual machining," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 967-984, April.
- Michael Emmerich & Kaifeng Yang & André Deutz & Hao Wang & Carlos M. Fonseca, 2016. "A Multicriteria Generalization of Bayesian Global Optimization," Springer Optimization and Its Applications, in: Panos M. Pardalos & Anatoly Zhigljavsky & Julius Žilinskas (ed.), Advances in Stochastic and Deterministic Global Optimization, pages 229-242, Springer.
- Kuo-Ming Tsai & Hao-Jhih Luo, 2017. "An inverse model for injection molding of optical lens using artificial neural network coupled with genetic algorithm," Journal of Intelligent Manufacturing, Springer, vol. 28(2), pages 473-487, February.
- Hong Seok Park & Dinh Son Nguyen & Thai Le-Hong & Xuan Tran, 2022. "Machine learning-based optimization of process parameters in selective laser melting for biomedical applications," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1843-1858, August.
- Dawei Zhao & Mikhail Ivanov & Yuanxun Wang & Dongjie Liang & Wenhao Du, 2021. "Multi-objective optimization of the resistance spot welding process using a hybrid approach," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2219-2234, December.
- Pongcharoen, P. & Hicks, C. & Braiden, P. M. & Stewardson, D. J., 2002. "Determining optimum Genetic Algorithm parameters for scheduling the manufacturing and assembly of complex products," International Journal of Production Economics, Elsevier, vol. 78(3), pages 311-322, August.
- Zhigang Jiang & Ya Jiang & Yan Wang & Hua Zhang & Huajun Cao & Guangdong Tian, 2019. "A hybrid approach of rough set and case-based reasoning to remanufacturing process planning," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 19-32, January.
- Mohammad Reza Khosravani & Sara Nasiri, 2020. "Injection molding manufacturing process: review of case-based reasoning applications," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 847-864, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shengrui Yu & Tianfeng Zhang & Yun Zhang & Zhigao Huang & Huang Gao & Wen Han & Lih-Sheng Turng & Huamin Zhou, 2022. "Intelligent setting of process parameters for injection molding based on case-based reasoning of molding features," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 77-89, January.
- Dawei Zhan & Huanlai Xing, 2020. "Expected improvement for expensive optimization: a review," Journal of Global Optimization, Springer, vol. 78(3), pages 507-544, November.
- Roman Stryczek & Kamil Wyrobek, 2021. "Heuristic techniques for modelling machine spinning processes," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 1189-1206, April.
- Ullrich, Christian A., 2013. "Integrated machine scheduling and vehicle routing with time windows," European Journal of Operational Research, Elsevier, vol. 227(1), pages 152-165.
- Ahmed Ktari & Mohamed El Mansori, 2022. "Digital twin of functional gating system in 3D printed molds for sand casting using a neural network," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 897-909, March.
- Rui Wang & Xiangyu Guo & Shisheng Zhong & Gaolei Peng & Lin Wang, 2022. "Decision rule mining for machining method chains based on rough set theory," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 799-807, March.
- İhsan Yanıkoğlu & Erinç Albey & Serkan Okçuoğlu, 2022. "Robust Parameter Design and Optimization for Quality Engineering," SN Operations Research Forum, Springer, vol. 3(1), pages 1-36, March.
- Wenkang Zhang & Yufan Zheng & Rafiq Ahmad, 2023. "The integrated process planning and scheduling of flexible job-shop-type remanufacturing systems using improved artificial bee colony algorithm," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 2963-2988, October.
- Yang, Taho & Kuo, Yiyo & Cho, Chiwoon, 2007. "A genetic algorithms simulation approach for the multi-attribute combinatorial dispatching decision problem," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1859-1873, February.
- Vitayasak, Srisatja & Pongcharoen, Pupong & Hicks, Chris, 2017. "A tool for solving stochastic dynamic facility layout problems with stochastic demand using either a Genetic Algorithm or modified Backtracking Search Algorithm," International Journal of Production Economics, Elsevier, vol. 190(C), pages 146-157.
- Li, Jing Rong & Khoo, Li Pheng & Tor, Shu Beng, 2006. "Generation of possible multiple components disassembly sequence for maintenance using a disassembly constraint graph," International Journal of Production Economics, Elsevier, vol. 102(1), pages 51-65, July.
- Dawei Zhan & Jiachang Qian & Yuansheng Cheng, 2017. "Balancing global and local search in parallel efficient global optimization algorithms," Journal of Global Optimization, Springer, vol. 67(4), pages 873-892, April.
- Longhua Xu & Chuanzhen Huang & Chengwu Li & Jun Wang & Hanlian Liu & Xiaodan Wang, 2021. "An improved case based reasoning method and its application in estimation of surface quality toward intelligent machining," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 313-327, January.
- Jia Liu & Jiafeng Ye & Daniel Silva Izquierdo & Aleksandr Vinel & Nima Shamsaei & Shuai Shao, 2023. "A review of machine learning techniques for process and performance optimization in laser beam powder bed fusion additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3249-3275, December.
- Jesús Martínez-Frutos & David Herrero-Pérez, 2016. "Kriging-based infill sampling criterion for constraint handling in multi-objective optimization," Journal of Global Optimization, Springer, vol. 64(1), pages 97-115, January.
- Eric Bradford & Artur M. Schweidtmann & Alexei Lapkin, 2018. "Efficient multiobjective optimization employing Gaussian processes, spectral sampling and a genetic algorithm," Journal of Global Optimization, Springer, vol. 71(2), pages 407-438, June.
- Bhupinder Singh Saini & Michael Emmerich & Atanu Mazumdar & Bekir Afsar & Babooshka Shavazipour & Kaisa Miettinen, 2022. "Optimistic NAUTILUS navigator for multiobjective optimization with costly function evaluations," Journal of Global Optimization, Springer, vol. 83(4), pages 865-889, August.
- Wenjie Wang & Guangdong Tian & Gang Yuan & Duc Truong Pham, 2023. "Energy-time tradeoffs for remanufacturing system scheduling using an invasive weed optimization algorithm," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1065-1083, March.
- Oscar Revelo Sánchez & César A. Collazos & Miguel A. Redondo, 2021. "Automatic Group Organization for Collaborative Learning Applying Genetic Algorithm Techniques and the Big Five Model," Mathematics, MDPI, vol. 9(13), pages 1-23, July.
- Chao Ke & Xiuyan Pan & Pan Wan & Zixi Huang & Zhigang Jiang, 2023. "An Intelligent Redesign Method for Used Products Based on Digital Twin," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
More about this item
Keywords
Injection molding; Bayesian optimization; Generative inverse design networks; Process optimization; Machine learning; Deep neural network;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:34:y:2023:i:8:d:10.1007_s10845-022-02018-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.