IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v34y2023i5d10.1007_s10845-022-01923-2.html
   My bibliography  Save this article

Artificial intelligence systems for tool condition monitoring in machining: analysis and critical review

Author

Listed:
  • Danil Yu Pimenov

    (South Ural State University)

  • Andres Bustillo

    (Universidad de Burgos)

  • Szymon Wojciechowski

    (Poznan University of Technology)

  • Vishal S. Sharma

    (University of the Witwatersrand)

  • Munish K. Gupta

    (Opole University of Technology)

  • Mustafa Kuntoğlu

    (Selcuk University)

Abstract

The wear of cutting tools, cutting force determination, surface roughness variations and other machining responses are of keen interest to latest researchers. The variations of these machining responses results in change in dimensional accuracy and productivity upto great extent. In addition, an excessive increase in wear leads to catastrophic consequences, exceeding the tool breakage. Therefore, this article discusses the online trend of modern approaches in tool condition monitoring while different machining operations. For this purpose, the effective use of new sensors and artificial intelligence (AI) is considered and followed during this holistic review work. The sensor systems used for monitoring tool wear are dynamometers, accelerometers, acoustic emission sensors, current and power sensors, image sensors, other sensors. These systems allow to solve the problem of automation and modeling of technological parameters of the main types of cutting, such as turning, milling, drilling and grinding. The modern artificial intelligence methods are considered, such as: Neural networks, Image recognition, Fuzzy logic, Adaptive neuro-fuzzy inference systems, Bayesian Networks, Support vector machine, Ensembles, Decision and regression trees, k-nearest neighbors, Artificial Neural Network, Markov model, Singular Spectrum Analysis, Genetic algorithms. Discussions also includes the main advantages, disadvantages and prospects of using various AI methods for tool wear monitoring. Moreover, the problems and future directions of the main processing methods using AI models are also highlighted.

Suggested Citation

  • Danil Yu Pimenov & Andres Bustillo & Szymon Wojciechowski & Vishal S. Sharma & Munish K. Gupta & Mustafa Kuntoğlu, 2023. "Artificial intelligence systems for tool condition monitoring in machining: analysis and critical review," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2079-2121, June.
  • Handle: RePEc:spr:joinma:v:34:y:2023:i:5:d:10.1007_s10845-022-01923-2
    DOI: 10.1007/s10845-022-01923-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-022-01923-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-022-01923-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Damien McParland & Szymon Baron & Sarah O’Rourke & Denis Dowling & Eamonn Ahearne & Andrew Parnell, 2019. "Prediction of tool-wear in turning of medical grade cobalt chromium molybdenum alloy (ASTM F75) using non-parametric Bayesian models," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1259-1270, March.
    2. Dragan Rodić & Milenko Sekulić & Marin Gostimirović & Vladimir Pucovsky & Davorin Kramar, 2021. "Fuzzy logic and sub-clustering approaches to predict main cutting force in high-pressure jet assisted turning," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 21-36, January.
    3. Changqing Liu & Yingguang Li & Guanyan Zhou & Weiming Shen, 2018. "A sensor fusion and support vector machine based approach for recognition of complex machining conditions," Journal of Intelligent Manufacturing, Springer, vol. 29(8), pages 1739-1752, December.
    4. Andres Bustillo & Danil Yu. Pimenov & Mozammel Mia & Wojciech Kapłonek, 2021. "Machine-learning for automatic prediction of flatness deviation considering the wear of the face mill teeth," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 895-912, March.
    5. Ercan Oztemel & Samet Gursev, 2020. "Literature review of Industry 4.0 and related technologies," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 127-182, January.
    6. K. Venkata Rao & P. B. G. S. N. Murthy, 2018. "Modeling and optimization of tool vibration and surface roughness in boring of steel using RSM, ANN and SVM," Journal of Intelligent Manufacturing, Springer, vol. 29(7), pages 1533-1543, October.
    7. James M. Griffin, 2018. "The prediction of profile deviations from multi process machining of complex geometrical features using combined evolutionary and neural network algorithms with embedded simulation," Journal of Intelligent Manufacturing, Springer, vol. 29(6), pages 1171-1189, August.
    8. Pedro Santos & Jesús Maudes & Andres Bustillo, 2018. "Identifying maximum imbalance in datasets for fault diagnosis of gearboxes," Journal of Intelligent Manufacturing, Springer, vol. 29(2), pages 333-351, February.
    9. Weili Cai & Wenjuan Zhang & Xiaofeng Hu & Yingchao Liu, 2020. "A hybrid information model based on long short-term memory network for tool condition monitoring," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1497-1510, August.
    10. Guofeng Wang & Yanchao Zhang & Chang Liu & Qinglu Xie & Yonggang Xu, 2019. "A new tool wear monitoring method based on multi-scale PCA," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 113-122, January.
    11. Kamran Javed & Rafael Gouriveau & Xiang Li & Noureddine Zerhouni, 2018. "Tool wear monitoring and prognostics challenges: a comparison of connectionist methods toward an adaptive ensemble model," Journal of Intelligent Manufacturing, Springer, vol. 29(8), pages 1873-1890, December.
    12. Amit Kumar Jain & Bhupesh Kumar Lad, 2019. "A novel integrated tool condition monitoring system," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1423-1436, March.
    13. Lucas Costa Brito & Márcio Bacci Silva & Marcus Antonio Viana Duarte, 2021. "Identification of cutting tool wear condition in turning using self-organizing map trained with imbalanced data," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 127-140, January.
    14. D. Yu. Pimenov & A. Bustillo & T. Mikolajczyk, 2018. "Artificial intelligence for automatic prediction of required surface roughness by monitoring wear on face mill teeth," Journal of Intelligent Manufacturing, Springer, vol. 29(5), pages 1045-1061, June.
    15. Doriana M. D’Addona & A. M. M. Sharif Ullah & D. Matarazzo, 2017. "Tool-wear prediction and pattern-recognition using artificial neural network and DNA-based computing," Journal of Intelligent Manufacturing, Springer, vol. 28(6), pages 1285-1301, August.
    16. X. Ajay Vasanth & P. Sam Paul & A. S. Varadarajan, 2020. "A neural network model to predict surface roughness during turning of hardened SS410 steel," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(3), pages 704-715, June.
    17. Emel Kuram & Babur Ozcelik, 2016. "Micro-milling performance of AISI 304 stainless steel using Taguchi method and fuzzy logic modelling," Journal of Intelligent Manufacturing, Springer, vol. 27(4), pages 817-830, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reza Teimouri & Sebastian Skoczypiec, 2024. "Predictive modeling of roughness change in multistep machining," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3577-3598, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andres Bustillo & Danil Yu. Pimenov & Mozammel Mia & Wojciech Kapłonek, 2021. "Machine-learning for automatic prediction of flatness deviation considering the wear of the face mill teeth," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 895-912, March.
    2. Dragan Rodić & Milenko Sekulić & Marin Gostimirović & Vladimir Pucovsky & Davorin Kramar, 2021. "Fuzzy logic and sub-clustering approaches to predict main cutting force in high-pressure jet assisted turning," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 21-36, January.
    3. Christian Kubik & Sebastian Michael Knauer & Peter Groche, 2022. "Smart sheet metal forming: importance of data acquisition, preprocessing and transformation on the performance of a multiclass support vector machine for predicting wear states during blanking," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 259-282, January.
    4. Yuqing Zhou & Bintao Sun & Weifang Sun & Zhi Lei, 2022. "Tool wear condition monitoring based on a two-layer angle kernel extreme learning machine using sound sensor for milling process," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 247-258, January.
    5. Andres Bustillo & Roberto Reis & Alisson R. Machado & Danil Yu. Pimenov, 2022. "Improving the accuracy of machine-learning models with data from machine test repetitions," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 203-221, January.
    6. Chia-Yu Hsu & Wei-Chen Liu, 2021. "Multiple time-series convolutional neural network for fault detection and diagnosis and empirical study in semiconductor manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 823-836, March.
    7. Pauline Ong & Choon Sin Ho & Desmond Daniel Vui Sheng Chin & Chee Kiong Sia & Chuan Huat Ng & Md Saidin Wahab & Abduladim Salem Bala, 2019. "Diameter prediction and optimization of hot extrusion-synthesized polypropylene filament using statistical and soft computing techniques," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1957-1972, April.
    8. Yanxi Zhang & Deyong You & Xiangdong Gao & Congyi Wang & Yangjin Li & Perry P. Gao, 2020. "Real-time monitoring of high-power disk laser welding statuses based on deep learning framework," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 799-814, April.
    9. Yang Hui & Xuesong Mei & Gedong Jiang & Fei Zhao & Pengcheng Shen, 2020. "Assembly consistency improvement of straightness error of the linear axis based on the consistency degree and GA-MSVM-I-KM," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1429-1441, August.
    10. Antonio Del Prete & Rodolfo Franchi & Stefania Cacace & Quirico Semeraro, 2020. "Optimization of cutting conditions using an evolutive online procedure," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 481-499, February.
    11. Govindan, Kannan & Kannan, Devika & Jørgensen, Thomas Ballegård & Nielsen, Tim Straarup, 2022. "Supply Chain 4.0 performance measurement: A systematic literature review, framework development, and empirical evidence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    12. Tiago Afonso & Anabela C. Alves & Paula Carneiro, 2021. "Lean Thinking, Logistic and Ergonomics: Synergetic Triad to Prepare Shop Floor Work Systems to Face Pandemic Situations," International Journal of Global Business and Competitiveness, Springer, vol. 16(1), pages 62-76, December.
    13. Shuting Wang & Jie Meng & Yuanlong Xie & Liquan Jiang & Han Ding & Xinyu Shao, 2023. "Reference training system for intelligent manufacturing talent education: platform construction and curriculum development," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1125-1164, March.
    14. Xiaoyu Zhan & Delia Mioara Popescu & Valentin Radu, 2020. "Challenges for Romanian Entrepreneurs in Managing Remote Workers," Book chapters-LUMEN Proceedings, in: Marcin Waldemar STANIEWSKI & Valentina VASILE & Adriana Grigorescu (ed.), International Conference Innovative Business Management & Global Entrepreneurship (IBMAGE 2020), edition 1, volume 14, chapter 49, pages 670-687, Editura Lumen.
    15. Christoph March & Ina Schieferdecker, 2021. "Technological Sovereignty as Ability, Not Autarky," CESifo Working Paper Series 9139, CESifo.
    16. Dongbo Wu & Hui Wang & Kaiyao Zhang & Bing Zhao & Xiaojun Lin, 2020. "Research on adaptive CNC machining arithmetic and process for near-net-shaped jet engine blade," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 717-744, March.
    17. Durga Prasad Penumuru & Sreekumar Muthuswamy & Premkumar Karumbu, 2020. "Identification and classification of materials using machine vision and machine learning in the context of industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 31(5), pages 1229-1241, June.
    18. Yiping Gao & Liang Gao & Xinyu Li & Yuwei Zheng, 2020. "A zero-shot learning method for fault diagnosis under unknown working loads," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 899-909, April.
    19. Rui Wang & Xiangyu Guo & Shisheng Zhong & Gaolei Peng & Lin Wang, 2022. "Decision rule mining for machining method chains based on rough set theory," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 799-807, March.
    20. Xiang Zhu & Yunqiu Zhang, 2020. "Co-word analysis method based on meta-path of subject knowledge network," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(2), pages 753-766, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:34:y:2023:i:5:d:10.1007_s10845-022-01923-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.