IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v28y2017i6d10.1007_s10845-015-1155-0.html
   My bibliography  Save this article

Tool-wear prediction and pattern-recognition using artificial neural network and DNA-based computing

Author

Listed:
  • Doriana M. D’Addona

    (University of Naples Federico II)

  • A. M. M. Sharif Ullah

    (Kitami Institute of Technology)

  • D. Matarazzo

    (University of Naples Federico II)

Abstract

Managing tool-wear is an important issue associated with all material removal processes. This paper deals with the application of two nature-inspired computing techniques, namely, artificial neural network (ANN) and (in silico) DNA-based computing (DBC) for managing the tool-wear. Experimental data (images of worn-zone of cutting tool) has been used to train the ANN and, then, to perform the DBC. It is demonstrated that the ANN can predict the degree of tool-wear from a set of tool-wear images processed under a given procedure whereas the DBC can identify the degree of similarity/dissimilar among the processed images. Further study can be carried out while solving other complex problems integrating ANN and DBC where both prediction and pattern-recognition are two important computational problems that need to be solved simultaneously.

Suggested Citation

  • Doriana M. D’Addona & A. M. M. Sharif Ullah & D. Matarazzo, 2017. "Tool-wear prediction and pattern-recognition using artificial neural network and DNA-based computing," Journal of Intelligent Manufacturing, Springer, vol. 28(6), pages 1285-1301, August.
  • Handle: RePEc:spr:joinma:v:28:y:2017:i:6:d:10.1007_s10845-015-1155-0
    DOI: 10.1007/s10845-015-1155-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-015-1155-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-015-1155-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Del Prete & Rodolfo Franchi & Stefania Cacace & Quirico Semeraro, 2020. "Optimization of cutting conditions using an evolutive online procedure," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 481-499, February.
    2. Chayma Sellami & Carlos Miranda & Ahmed Samet & Mohamed Anis Bach Tobji & François de Beuvron, 2020. "On mining frequent chronicles for machine failure prediction," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 1019-1035, April.
    3. Yaxuan Liu, 2021. "Developing the network social media in graphic design based on artificial neural network," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(4), pages 640-653, August.
    4. Woong-Gi Kim & Namhyuk Ham & Jae-Jun Kim, 2021. "Enhanced Subcontractors Allocation for Apartment Construction Project Applying Conceptual 4D Digital Twin Framework," Sustainability, MDPI, vol. 13(21), pages 1-21, October.
    5. Antonio Armillotta, 2021. "On the role of complexity in machining time estimation," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2281-2299, December.
    6. Andres Bustillo & Danil Yu. Pimenov & Mozammel Mia & Wojciech Kapłonek, 2021. "Machine-learning for automatic prediction of flatness deviation considering the wear of the face mill teeth," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 895-912, March.
    7. Danil Yu Pimenov & Andres Bustillo & Szymon Wojciechowski & Vishal S. Sharma & Munish K. Gupta & Mustafa Kuntoğlu, 2023. "Artificial intelligence systems for tool condition monitoring in machining: analysis and critical review," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2079-2121, June.
    8. Ohyung Kwon & Hyung Giun Kim & Min Ji Ham & Wonrae Kim & Gun-Hee Kim & Jae-Hyung Cho & Nam Il Kim & Kangil Kim, 2020. "A deep neural network for classification of melt-pool images in metal additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 375-386, February.
    9. Pauline Ong & Choon Sin Ho & Desmond Daniel Vui Sheng Chin & Chee Kiong Sia & Chuan Huat Ng & Md Saidin Wahab & Abduladim Salem Bala, 2019. "Diameter prediction and optimization of hot extrusion-synthesized polypropylene filament using statistical and soft computing techniques," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1957-1972, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:28:y:2017:i:6:d:10.1007_s10845-015-1155-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.