IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v27y2016i4d10.1007_s10845-014-0916-5.html
   My bibliography  Save this article

Micro-milling performance of AISI 304 stainless steel using Taguchi method and fuzzy logic modelling

Author

Listed:
  • Emel Kuram

    (Gebze Institute of Technology)

  • Babur Ozcelik

    (Gebze Institute of Technology)

Abstract

In this study, micro-milling of AISI 304 stainless steel with ball nose end mill was conducted using Taguchi method. The influences of spindle speed, feed rate and depth of cut on tool wear, cutting forces and surface roughness were examined. Taguchi’s signal to noise ratio was utilized to optimize the output responses. The influence of control parameters on output responses was determined by analysis of variance. In this study, the models describing the relationship between the independent variables and the dependent variables were also established by using regression and fuzzy logic. Efficiency of both models was determined by analyzing correlation coefficients and by comparing with experimental values. The results showed that both regression and fuzzy logic modelling could be efficiently utilized for the prediction of tool wear, cutting forces and surface roughness in micro-milling of AISI 304 stainless steel.

Suggested Citation

  • Emel Kuram & Babur Ozcelik, 2016. "Micro-milling performance of AISI 304 stainless steel using Taguchi method and fuzzy logic modelling," Journal of Intelligent Manufacturing, Springer, vol. 27(4), pages 817-830, August.
  • Handle: RePEc:spr:joinma:v:27:y:2016:i:4:d:10.1007_s10845-014-0916-5
    DOI: 10.1007/s10845-014-0916-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-014-0916-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-014-0916-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soo-Bong Cho & Seung-Kook Ro & Byung-Sub Kim & Sung-Cheul Lee & Jong-Kweon Park, 2021. "The development of a micro-pattern manufacturing method using rotating active tools with compensation of estimated errors and an LMS algorithm," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 51-59, January.
    2. Andres Bustillo & Danil Yu. Pimenov & Mozammel Mia & Wojciech Kapłonek, 2021. "Machine-learning for automatic prediction of flatness deviation considering the wear of the face mill teeth," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 895-912, March.
    3. Danil Yu Pimenov & Andres Bustillo & Szymon Wojciechowski & Vishal S. Sharma & Munish K. Gupta & Mustafa Kuntoğlu, 2023. "Artificial intelligence systems for tool condition monitoring in machining: analysis and critical review," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2079-2121, June.
    4. Dragan Rodić & Milenko Sekulić & Marin Gostimirović & Vladimir Pucovsky & Davorin Kramar, 2021. "Fuzzy logic and sub-clustering approaches to predict main cutting force in high-pressure jet assisted turning," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 21-36, January.
    5. Pauline Ong & Choon Sin Ho & Desmond Daniel Vui Sheng Chin & Chee Kiong Sia & Chuan Huat Ng & Md Saidin Wahab & Abduladim Salem Bala, 2019. "Diameter prediction and optimization of hot extrusion-synthesized polypropylene filament using statistical and soft computing techniques," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1957-1972, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:27:y:2016:i:4:d:10.1007_s10845-014-0916-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.