Tool wear condition monitoring based on a two-layer angle kernel extreme learning machine using sound sensor for milling process
Author
Abstract
Suggested Citation
DOI: 10.1007/s10845-020-01663-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Guofeng Wang & Yanchao Zhang & Chang Liu & Qinglu Xie & Yonggang Xu, 2019. "A new tool wear monitoring method based on multi-scale PCA," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 113-122, January.
- Kamran Javed & Rafael Gouriveau & Xiang Li & Noureddine Zerhouni, 2018. "Tool wear monitoring and prognostics challenges: a comparison of connectionist methods toward an adaptive ensemble model," Journal of Intelligent Manufacturing, Springer, vol. 29(8), pages 1873-1890, December.
- C. K. Madhusudana & Hemantha Kumar & S. Narendranath, 2017. "Face milling tool condition monitoring using sound signal," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1643-1653, November.
- Zhiwen Huang & Jianmin Zhu & Jingtao Lei & Xiaoru Li & Fengqing Tian, 2020. "Tool wear predicting based on multi-domain feature fusion by deep convolutional neural network in milling operations," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 953-966, April.
- Weili Cai & Wenjuan Zhang & Xiaofeng Hu & Yingchao Liu, 2020. "A hybrid information model based on long short-term memory network for tool condition monitoring," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1497-1510, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Rishi Kumar & Kuldip Singh Sangwan & Christoph Herrmann & Rishi Ghosh, 2024. "Development of a cyber physical production system framework for smart tool health management," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3037-3066, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Danil Yu Pimenov & Andres Bustillo & Szymon Wojciechowski & Vishal S. Sharma & Munish K. Gupta & Mustafa Kuntoğlu, 2023. "Artificial intelligence systems for tool condition monitoring in machining: analysis and critical review," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2079-2121, June.
- Chia-Yu Hsu & Wei-Chen Liu, 2021. "Multiple time-series convolutional neural network for fault detection and diagnosis and empirical study in semiconductor manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 823-836, March.
- Dongbo Wu & Hui Wang & Kaiyao Zhang & Bing Zhao & Xiaojun Lin, 2020. "Research on adaptive CNC machining arithmetic and process for near-net-shaped jet engine blade," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 717-744, March.
- Ammar H. Elsheikh & Taher A. Shehabeldeen & Jianxin Zhou & Ezzat Showaib & Mohamed Abd Elaziz, 2021. "Prediction of laser cutting parameters for polymethylmethacrylate sheets using random vector functional link network integrated with equilibrium optimizer," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1377-1388, June.
- Wo Jae Lee & Gamini P. Mendis & Matthew J. Triebe & John W. Sutherland, 2020. "Monitoring of a machining process using kernel principal component analysis and kernel density estimation," Journal of Intelligent Manufacturing, Springer, vol. 31(5), pages 1175-1189, June.
- K. N. Ravikumar & Suhas S. Aralikatti & Hemantha Kumar & G. N. Kumar & K. V. Gangadharan, 2022. "Fault diagnosis of antifriction bearing in internal combustion engine gearbox using data mining techniques," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 1121-1134, June.
- Joanna Kossakowska & Sebastian Bombiński & Krzysztof Ejsmont, 2021. "Analysis of the Suitability of Signal Features for Individual Sensor Types in the Diagnosis of Gradual Tool Wear in Turning," Energies, MDPI, vol. 14(20), pages 1-23, October.
- Longhua Xu & Chuanzhen Huang & Chengwu Li & Jun Wang & Hanlian Liu & Xiaodan Wang, 2021. "Estimation of tool wear and optimization of cutting parameters based on novel ANFIS-PSO method toward intelligent machining," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 77-90, January.
- Jeongsub Choi & Mengmeng Zhu & Jihoon Kang & Myong K. Jeong, 2024. "Convolutional neural network based multi-input multi-output model for multi-sensor multivariate virtual metrology in semiconductor manufacturing," Annals of Operations Research, Springer, vol. 339(1), pages 185-201, August.
- M. R. Pavan Kumar & Prabhu Jayagopal, 2023. "Context-sensitive lexicon for imbalanced text sentiment classification using bidirectional LSTM," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2123-2132, June.
- Qiwu Zhu & Qingyu Xiong & Zhengyi Yang & Yang Yu, 2023. "A novel feature-fusion-based end-to-end approach for remaining useful life prediction," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3495-3505, December.
- Jianliang He & Yuxin Sun & Chen Yin & Yan He & Yulin Wang, 2023. "Cross-domain adaptation network based on attention mechanism for tool wear prediction," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3365-3387, December.
- Dawei Zhao & Mikhail Ivanov & Yuanxun Wang & Wenhao Du, 2021. "Welding quality evaluation of resistance spot welding based on a hybrid approach," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1819-1832, October.
- Lucas Costa Brito & Márcio Bacci Silva & Marcus Antonio Viana Duarte, 2021. "Identification of cutting tool wear condition in turning using self-organizing map trained with imbalanced data," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 127-140, January.
- Yanan Pan & Renke Kang & Zhigang Dong & Wenhao Du & Sen Yin & Yan Bao, 2022. "On-line prediction of ultrasonic elliptical vibration cutting surface roughness of tungsten heavy alloy based on deep learning," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 675-685, March.
- Carlos A. Escobar & Megan E. McGovern & Ruben Morales-Menendez, 2021. "Quality 4.0: a review of big data challenges in manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2319-2334, December.
- Xianli Liu & Bowen Zhang & Xuebing Li & Shaoyang Liu & Caixu Yue & Steven Y. Liang, 2023. "An approach for tool wear prediction using customized DenseNet and GRU integrated model based on multi-sensor feature fusion," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 885-902, February.
- Chuanhui Zuo & Jialong Wang & Mingping Liu & Suhui Deng & Qingnian Wang, 2023. "An Ensemble Framework for Short-Term Load Forecasting Based on TimesNet and TCN," Energies, MDPI, vol. 16(14), pages 1-17, July.
- Raouf Zerrougui & Amel B. H. Adamou-Mitiche & Lahcene Mitiche, 2023. "A novel machine learning algorithm for interval systems approximation based on artificial neural network," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2171-2184, June.
- Zhicheng Xu & Vignesh Selvaraj & Sangkee Min, 2024. "State identification of a 5-axis ultra-precision CNC machine tool using energy consumption data assisted by multi-output densely connected 1D-CNN model," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 147-160, January.
More about this item
Keywords
Tool wear monitoring; Milling process; Sound sensor; Kernel extreme learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:33:y:2022:i:1:d:10.1007_s10845-020-01663-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.