IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v31y2020i6d10.1007_s10845-019-01520-w.html
   My bibliography  Save this article

Assembly consistency improvement of straightness error of the linear axis based on the consistency degree and GA-MSVM-I-KM

Author

Listed:
  • Yang Hui

    (Xi’an Jiaotong University
    Shaanxi Key Laboratory of Intelligent Robots
    Xi’an Jiaotong University)

  • Xuesong Mei

    (Xi’an Jiaotong University
    Shaanxi Key Laboratory of Intelligent Robots
    Xi’an Jiaotong University)

  • Gedong Jiang

    (Xi’an Jiaotong University
    Shaanxi Key Laboratory of Intelligent Robots
    Xi’an Jiaotong University)

  • Fei Zhao

    (Xi’an Jiaotong University
    Shaanxi Key Laboratory of Intelligent Robots
    Xi’an Jiaotong University)

  • Pengcheng Shen

    (Xi’an Jiaotong University)

Abstract

Fluctuation on the assembly quality of the linear axis of machine tools (LA-MT) at the same batch is urgent problem need to be solved in assembly of machine tools. In this paper, a new concept of assembly consistency degree was introduced for defining the fluctuation degree of assembly quality. Based on assembly consistency degree, a hybrid machine learning method, genetic algorithm optimized multi-class support vector machine and improved Kuhn–Munkres (GA-MSVM-I-KM) was proposed for improving assembly consistency of LA-MT. The assembly of linear axis of a three-axis vertical machining center was regarded as an example, and the assembly consistency influence factors on straightness error of Y-axis (SE-YA) were analyzed through the Kruskal–Wallis statistical method. The main factors affected on the assembly consistency of SE-YA turned out to be the machining errors of bed and the assembly team technical levels. Based on this, the assembly consistency improvement model was established. Then, the prediction model of SE-YA based on assembly experiment data and genetic algorithm optimized multi-class support vector machine (GA-MSVM) was constructed, and I-KM method was applied for improving assembly consistency of SE-YA. The results show that the GA-MSVM-I-KM method can effectively enhance the assembly consistency of SE-YA, and the assembly consistency degree is reduced from 0.19 to 0.08.

Suggested Citation

  • Yang Hui & Xuesong Mei & Gedong Jiang & Fei Zhao & Pengcheng Shen, 2020. "Assembly consistency improvement of straightness error of the linear axis based on the consistency degree and GA-MSVM-I-KM," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1429-1441, August.
  • Handle: RePEc:spr:joinma:v:31:y:2020:i:6:d:10.1007_s10845-019-01520-w
    DOI: 10.1007/s10845-019-01520-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-019-01520-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-019-01520-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhe Wei & Yixiong Feng & Zhaoxi Hong & Rongxia Qu & Jianrong Tan, 2017. "Product quality improvement method in manufacturing process based on kernel optimisation algorithm," International Journal of Production Research, Taylor & Francis Journals, vol. 55(19), pages 5597-5608, October.
    2. K. Venkata Rao & P. B. G. S. N. Murthy, 2018. "Modeling and optimization of tool vibration and surface roughness in boring of steel using RSM, ANN and SVM," Journal of Intelligent Manufacturing, Springer, vol. 29(7), pages 1533-1543, October.
    3. Qiang Cheng & Hongwei Zhao & Yongsheng Zhao & Bingwei Sun & Peihua Gu, 2018. "Machining accuracy reliability analysis of multi-axis machine tool based on Monte Carlo simulation," Journal of Intelligent Manufacturing, Springer, vol. 29(1), pages 191-209, January.
    4. Manjeevan Seera & Chee Peng Lim & Chu Kiong Loo, 2016. "Motor fault detection and diagnosis using a hybrid FMM-CART model with online learning," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1273-1285, December.
    5. Sheng Hu & Liping Zhao & Yiyong Yao & Rushan Dou, 2016. "A variance change point estimation method based on intelligent ensemble model for quality fluctuation analysis," International Journal of Production Research, Taylor & Francis Journals, vol. 54(19), pages 5783-5797, October.
    6. Pedro Santos & Jesús Maudes & Andres Bustillo, 2018. "Identifying maximum imbalance in datasets for fault diagnosis of gearboxes," Journal of Intelligent Manufacturing, Springer, vol. 29(2), pages 333-351, February.
    7. Feng Zhang & Taotao Zhou, 2019. "Process parameter optimization for laser-magnetic welding based on a sample-sorted support vector regression," Journal of Intelligent Manufacturing, Springer, vol. 30(5), pages 2217-2230, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Hui & Xuesong Mei & Gedong Jiang & Fei Zhao & Ziwei Ma & Tao Tao, 2022. "Assembly quality evaluation for linear axis of machine tool using data-driven modeling approach," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 753-769, March.
    2. Gang Wang & Feng Zhang & Bayi Cheng & Fang Fang, 2021. "DAMER: a novel diagnosis aggregation method with evidential reasoning rule for bearing fault diagnosis," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 1-20, January.
    3. Danil Yu Pimenov & Andres Bustillo & Szymon Wojciechowski & Vishal S. Sharma & Munish K. Gupta & Mustafa Kuntoğlu, 2023. "Artificial intelligence systems for tool condition monitoring in machining: analysis and critical review," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2079-2121, June.
    4. Sangho Lee & Youngdoo Son, 2021. "Motor Load Balancing with Roll Force Prediction for a Cold-Rolling Setup with Neural Networks," Mathematics, MDPI, vol. 9(12), pages 1-21, June.
    5. Antonio Caputi & Davide Russo, 2021. "The optimization of the control logic of a redundant six axis milling machine," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1441-1453, June.
    6. Jorge Maldonado-Correa & Marcelo Valdiviezo-Condolo & Estefanía Artigao & Sergio Martín-Martínez & Emilio Gómez-Lázaro, 2024. "Classification of Highly Imbalanced Supervisory Control and Data Acquisition Data for Fault Detection of Wind Turbine Generators," Energies, MDPI, vol. 17(7), pages 1-20, March.
    7. Chi Ma & Hongquan Gui & Jialan Liu, 2023. "Self learning-empowered thermal error control method of precision machine tools based on digital twin," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 695-717, February.
    8. Zhiwei Zhao & Yingguang Li & Changqing Liu & James Gao, 2020. "On-line part deformation prediction based on deep learning," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 561-574, March.
    9. Zhen Zhang & Zenan Yang & Chenchong Wang & Wei Xu, 2024. "Accelerating ultrashort pulse laser micromachining process comprehensive optimization using a machine learning cycle design strategy integrated with a physical model," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 449-465, January.
    10. Anshuman Kumar Sahu & Siba Sankar Mahapatra, 2021. "Prediction and optimization of performance measures in electrical discharge machining using rapid prototyping tool electrodes," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2125-2145, December.
    11. Roham Sadeghi Tabar & Kristina Wärmefjord & Rikard Söderberg & Lars Lindkvist, 2021. "Critical joint identification for efficient sequencing," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 769-780, March.
    12. Andres Bustillo & Danil Yu. Pimenov & Mozammel Mia & Wojciech Kapłonek, 2021. "Machine-learning for automatic prediction of flatness deviation considering the wear of the face mill teeth," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 895-912, March.
    13. Chuanxia Jian & Yinhui Ao, 2023. "Imbalanced fault diagnosis based on semi-supervised ensemble learning," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 3143-3158, October.
    14. Seokho Kang, 2020. "Joint modeling of classification and regression for improving faulty wafer detection in semiconductor manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 319-326, February.
    15. Tian Wang & Meina Qiao & Mengyi Zhang & Yi Yang & Hichem Snoussi, 2020. "Data-driven prognostic method based on self-supervised learning approaches for fault detection," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1611-1619, October.
    16. Youngju Kim & Hoyeop Lee & Chang Ouk Kim, 2023. "A variational autoencoder for a semiconductor fault detection model robust to process drift due to incomplete maintenance," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 529-540, February.
    17. Jungwon Yu & Jaeyel Jang & Jaeyeong Yoo & June Ho Park & Sungshin Kim, 2018. "A Fault Isolation Method via Classification and Regression Tree-Based Variable Ranking for Drum-Type Steam Boiler in Thermal Power Plant," Energies, MDPI, vol. 11(5), pages 1-19, May.
    18. Kong, Xuefeng & Yang, Jun & Hao, Songhua, 2021. "Reliability modeling-based tolerance design and process parameter analysis considering performance degradation," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    19. Ye, Zhenggeng & Yang, Hui & Cai, Zhiqiang & Si, Shubin & Zhou, Fuli, 2021. "Performance evaluation of serial-parallel manufacturing systems based on the impact of heterogeneous feedstocks on machine degradation," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    20. Li, Yao & He, Yihai & Ai, Jun & Wang, Chengcheng & Han, Xiao & Liao, Ruoyu & Yang, Xiuzhen, 2022. "Functional health prognosis approach of multi-station manufacturing system considering coupling operational factors," Reliability Engineering and System Safety, Elsevier, vol. 219(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:31:y:2020:i:6:d:10.1007_s10845-019-01520-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.