IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v34y2023i4d10.1007_s10845-021-01894-w.html
   My bibliography  Save this article

Robust modeling method for thermal error of CNC machine tools based on random forest algorithm

Author

Listed:
  • Mengrui Zhu

    (Shanghai Jiao Tong University)

  • Yun Yang

    (Shanghai Jiao Tong University)

  • Xiaobing Feng

    (Shanghai Jiao Tong University)

  • Zhengchun Du

    (Shanghai Jiao Tong University)

  • Jianguo Yang

    (Shanghai Jiao Tong University)

Abstract

Thermal error of machine tools has a huge influence on the accuracy of the workpiece. However, the nonlinearity of the thermal error limits the accuracy and robustness of the prediction model. With the rapid advancement in artificial intelligence, this paper presents a novel thermal error modeling method based on random forest. The model’s hyper-parameters are easy to be optimized by grid searching method integrating with cross validation. The temperature features are measured as the model input. Based on the out-of-bag data generated during modeling process, the proposed model itself can simultaneously evaluate the temperature feature importance through comparing the decrease in model’s the prediction accuracy after randomly shuffling the value of the target feature. Moreover, to enhance the model performance and reduce the measurement and computational cost, the method of selecting key temperature points are presented to exclude the redundant features through iteratively eliminating the least important feature and comparing the prediction accuracy under different feature combinations. Furthermore, the hysteresis effect between temperature and deformation is also considered. The method of determining the time lag is proposed through permuting the original time series of the target feature while keeping the remainder constant and comparing the resultant relative importance. A thermal error experiment validates the accuracy and robustness of the proposed model which can continuously maintain the prediction accuracy of over 90% in spite of varying operation conditions. Compared to conventional machine learning methods, the proposed model requires less training data, enables faster and more intuitive parameter tuning, achieves higher prediction accuracy, and has stronger robustness.

Suggested Citation

  • Mengrui Zhu & Yun Yang & Xiaobing Feng & Zhengchun Du & Jianguo Yang, 2023. "Robust modeling method for thermal error of CNC machine tools based on random forest algorithm," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 2013-2026, April.
  • Handle: RePEc:spr:joinma:v:34:y:2023:i:4:d:10.1007_s10845-021-01894-w
    DOI: 10.1007/s10845-021-01894-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-021-01894-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-021-01894-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Mosallam & K. Medjaher & N. Zerhouni, 2016. "Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction," Journal of Intelligent Manufacturing, Springer, vol. 27(5), pages 1037-1048, October.
    2. S. Zhang & T. N. Wong, 2018. "Integrated process planning and scheduling: an enhanced ant colony optimization heuristic with parameter tuning," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 585-601, March.
    3. Antoni Świć & Arkadiusz Gola & Łukasz Sobaszek & Natalia Šmidová, 2021. "A thermo-mechanical machining method for improving the accuracy and stability of the geometric shape of long low-rigidity shafts," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1939-1951, October.
    4. Liang Tian & Yu Luo, 2020. "A study on the prediction of inherent deformation in fillet-welded joint using support vector machine and genetic optimization algorithm," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 575-596, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. You-Shyang Chen & Jieh-Ren Chang & Ying-Hsun Hung & Jia-Hsien Lai, 2023. "Oversampling Application of Identifying 3D Selective Laser Sintering Yield by Hybrid Mathematical Classification Models," Mathematics, MDPI, vol. 11(14), pages 1-30, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdessamad Ait El Cadi & Omar Souissi & Rabie Ben Atitallah & Nicolas Belanger & Abdelhakim Artiba, 2018. "Mathematical programming models for scheduling in a CPU/FPGA architecture with heterogeneous communication delays," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 629-640, March.
    2. Merainani, Boualem & Laddada, Sofiane & Bechhoefer, Eric & Chikh, Mohamed Abdessamed Ait & Benazzouz, Djamel, 2022. "An integrated methodology for estimating the remaining useful life of high-speed wind turbine shaft bearings with limited samples," Renewable Energy, Elsevier, vol. 182(C), pages 1141-1151.
    3. Wenkang Zhang & Yufan Zheng & Rafiq Ahmad, 2023. "The integrated process planning and scheduling of flexible job-shop-type remanufacturing systems using improved artificial bee colony algorithm," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 2963-2988, October.
    4. Zhu, Xuedong & Son, Junbo & Zhang, Xi & Wu, Jianguo, 2023. "Constraint programming and logic-based Benders decomposition for the integrated process planning and scheduling problem," Omega, Elsevier, vol. 117(C).
    5. Riku-Pekka Nikula & Konsta Karioja & Kauko Leiviskä & Esko Juuso, 2019. "Prediction of mechanical stress in roller leveler based on vibration measurements and steel strip properties," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1563-1579, April.
    6. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
    7. Tomoko Sakiyama & Ikuo Arizono, 2018. "Coordination of Pheromone Deposition Might Solve Time-Constrained Travelling Salesman Problem," Complexity, Hindawi, vol. 2018, pages 1-5, December.
    8. Thi-Tinh Le & Seok-Ju Lee & Minh-Chau Dinh & Minwon Park, 2023. "Design of an Improved Remaining Useful Life Prediction Model Based on Vibration Signals of Wind Turbine Rotating Components," Energies, MDPI, vol. 17(1), pages 1-18, December.
    9. Nguyen, Khanh T.P. & Medjaher, Kamal, 2019. "A new dynamic predictive maintenance framework using deep learning for failure prognostics," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 251-262.
    10. Roham Sadeghi Tabar & Kristina Wärmefjord & Rikard Söderberg & Lars Lindkvist, 2021. "Critical joint identification for efficient sequencing," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 769-780, March.
    11. Zhe Li & Yi Wang & Kesheng Wang, 2020. "A data-driven method based on deep belief networks for backlash error prediction in machining centers," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1693-1705, October.
    12. Thirupathi Samala & Vijaya Kumar Manupati & Maria Leonilde R. Varela & Goran Putnik, 2021. "Investigation of Degradation and Upgradation Models for Flexible Unit Systems: A Systematic Literature Review," Future Internet, MDPI, vol. 13(3), pages 1-18, February.
    13. Sicheng Zhang & T.N. Wong, 2016. "Studying the impact of sequence-dependent set-up times in integrated process planning and scheduling with E-ACO heuristic," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4815-4838, August.
    14. Lewis, Austin D. & Groth, Katrina M., 2023. "A comparison of DBN model performance in SIPPRA health monitoring based on different data stream discretization methods," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    15. Tian Wang & Meina Qiao & Mengyi Zhang & Yi Yang & Hichem Snoussi, 2020. "Data-driven prognostic method based on self-supervised learning approaches for fault detection," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1611-1619, October.
    16. Zhang, Sicheng & Li, Xiang & Zhang, Bowen & Wang, Shouyang, 2020. "Multi-objective optimisation in flexible assembly job shop scheduling using a distributed ant colony system," European Journal of Operational Research, Elsevier, vol. 283(2), pages 441-460.
    17. Saideep Nannapaneni & Sankaran Mahadevan & Abhishek Dubey & Yung-Tsun Tina Lee, 2021. "Online monitoring and control of a cyber-physical manufacturing process under uncertainty," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1289-1304, June.
    18. Chao Liu & Peifeng Niu & Guoqiang Li & Yunpeng Ma & Weiping Zhang & Ke Chen, 2018. "Enhanced shuffled frog-leaping algorithm for solving numerical function optimization problems," Journal of Intelligent Manufacturing, Springer, vol. 29(5), pages 1133-1153, June.
    19. Hyun Cheol Lee & Chunghun Ha, 2019. "Sustainable Integrated Process Planning and Scheduling Optimization Using a Genetic Algorithm with an Integrated Chromosome Representation," Sustainability, MDPI, vol. 11(2), pages 1-23, January.
    20. G. Cherif & E. Leclercq & D. Lefebvre, 2023. "Scheduling of a class of partial routing FMS in uncertain environments with beam search," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 493-514, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:34:y:2023:i:4:d:10.1007_s10845-021-01894-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.