IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v31y2020i5d10.1007_s10845-019-01511-x.html
   My bibliography  Save this article

Support vector machines based non-contact fault diagnosis system for bearings

Author

Listed:
  • Deepam Goyal

    (National Institute of Technical Teachers Training and Research)

  • Anurag Choudhary

    (National Institute of Technical Teachers Training and Research)

  • B. S. Pabla

    (National Institute of Technical Teachers Training and Research)

  • S. S. Dhami

    (National Institute of Technical Teachers Training and Research)

Abstract

Bearing defects have been accepted as one of the major causes of failure in rotating machinery. It is important to identify and diagnose the failure behavior of bearings for the reliable operation of equipment. In this paper, a low-cost non-contact vibration sensor has been developed for detecting the faults in bearings. The supervised learning method, support vector machine (SVM), has been employed as a tool to validate the effectiveness of the developed sensor. Experimental vibration data collected for different bearing defects under various loading and running conditions have been analyzed to develop a system for diagnosing the faults for machine health monitoring. Fault diagnosis has been accomplished using discrete wavelet transform for denoising the signal. Mahalanobis distance criteria has been employed for selecting the strongest feature on the extracted relevant features. Finally, these selected features have been passed to the SVM classifier for identifying and classifying the various bearing defects. The results reveal that the vibration signatures obtained from developed non-contact sensor compare well with the accelerometer data obtained under the same conditions. A developed sensor is a promising tool for detecting the bearing damage and identifying its class. SVM results have established the effectiveness of the developed non-contact sensor as a vibration measuring instrument which makes the developed sensor a cost-effective tool for the condition monitoring of rotating machines.

Suggested Citation

  • Deepam Goyal & Anurag Choudhary & B. S. Pabla & S. S. Dhami, 2020. "Support vector machines based non-contact fault diagnosis system for bearings," Journal of Intelligent Manufacturing, Springer, vol. 31(5), pages 1275-1289, June.
  • Handle: RePEc:spr:joinma:v:31:y:2020:i:5:d:10.1007_s10845-019-01511-x
    DOI: 10.1007/s10845-019-01511-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-019-01511-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-019-01511-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shujie Liu & Yawei Hu & Chao Li & Huitian Lu & Hongchao Zhang, 2017. "Machinery condition prediction based on wavelet and support vector machine," Journal of Intelligent Manufacturing, Springer, vol. 28(4), pages 1045-1055, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cuixia Jiang & Hao Chen & Qifa Xu & Xiangxiang Wang, 2023. "Few-shot fault diagnosis of rotating machinery with two-branch prototypical networks," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1667-1681, April.
    2. Andhi Indira Kusuma & Yi-Mei Huang, 2023. "Product quality prediction in pulsed laser cutting of silicon steel sheet using vibration signals and deep neural network," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1683-1699, April.
    3. Dechen Yao & Hengchang Liu & Jianwei Yang & Jiao Zhang, 2021. "Implementation of a novel algorithm of wheelset and axle box concurrent fault identification based on an efficient neural network with the attention mechanism," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 729-743, March.
    4. Rubén Medina & Jean Carlo Macancela & Pablo Lucero & Diego Cabrera & René-Vinicio Sánchez & Mariela Cerrada, 2022. "Gear and bearing fault classification under different load and speed by using Poincaré plot features and SVM," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1031-1055, April.
    5. Xiaoyin Nie & Gang Xie, 2021. "A novel normalized recurrent neural network for fault diagnosis with noisy labels," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1271-1288, June.
    6. Christian Kubik & Sebastian Michael Knauer & Peter Groche, 2022. "Smart sheet metal forming: importance of data acquisition, preprocessing and transformation on the performance of a multiclass support vector machine for predicting wear states during blanking," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 259-282, January.
    7. Jiangming Jia & Chenan Zhang & Jianneng Chen & Zheng Zhu & Ming Mao, 2022. "Fault Diagnosis Analysis of Angle Grinder Based on ACD-DE and SVM Hybrid Algorithm," Mathematics, MDPI, vol. 10(18), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anshuman Kumar Sahu & Siba Sankar Mahapatra, 2021. "Prediction and optimization of performance measures in electrical discharge machining using rapid prototyping tool electrodes," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2125-2145, December.
    2. Andhi Indira Kusuma & Yi-Mei Huang, 2023. "Product quality prediction in pulsed laser cutting of silicon steel sheet using vibration signals and deep neural network," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1683-1699, April.
    3. Christian Kubik & Sebastian Michael Knauer & Peter Groche, 2022. "Smart sheet metal forming: importance of data acquisition, preprocessing and transformation on the performance of a multiclass support vector machine for predicting wear states during blanking," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 259-282, January.
    4. Wei Qin & Dongye Zha & Jie Zhang, 2020. "An effective approach for causal variables analysis in diesel engine production by using mutual information and network deconvolution," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1661-1671, October.
    5. Yun Bai & Zhenzhong Sun & Bo Zeng & Jianyu Long & Lin Li & José Valente Oliveira & Chuan Li, 2019. "A comparison of dimension reduction techniques for support vector machine modeling of multi-parameter manufacturing quality prediction," Journal of Intelligent Manufacturing, Springer, vol. 30(5), pages 2245-2256, June.
    6. Lei Fu & Yanding Wei & Sheng Fang & Xiaojun Zhou & Junqiang Lou, 2017. "Condition Monitoring for Roller Bearings of Wind Turbines Based on Health Evaluation under Variable Operating States," Energies, MDPI, vol. 10(10), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:31:y:2020:i:5:d:10.1007_s10845-019-01511-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.