Condition Monitoring for the Roller Bearings of Wind Turbines under Variable Working Conditions Based on the Fisher Score and Permutation Entropy
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Miao He & David He & Jae Yoon & Thomas J Nostrand & Junda Zhu & Eric Bechhoefer, 2019. "Wind turbine planetary gearbox feature extraction and fault diagnosis using a deep-learning-based approach," Journal of Risk and Reliability, , vol. 233(3), pages 303-316, June.
- Bishop, Ian D. & Miller, David R., 2007. "Visual assessment of off-shore wind turbines: The influence of distance, contrast, movement and social variables," Renewable Energy, Elsevier, vol. 32(5), pages 814-831.
- Igba, Joel & Alemzadeh, Kazem & Durugbo, Christopher & Eiriksson, Egill Thor, 2016. "Analysing RMS and peak values of vibration signals for condition monitoring of wind turbine gearboxes," Renewable Energy, Elsevier, vol. 91(C), pages 90-106.
- Gibbons, Stephen, 2015.
"Gone with the wind: Valuing the visual impacts of wind turbines through house prices,"
Journal of Environmental Economics and Management, Elsevier, vol. 72(C), pages 177-196.
- Stephen Gibbons, 2014. "Gone with the Wind: Valuing the Visual Impacts of Wind Turbines through House Prices," SERC Discussion Papers 0159, Centre for Economic Performance, LSE.
- Gibbons, Stephen, 2015. "Gone with the wind: valuing the visual impacts of wind turbines through house prices," LSE Research Online Documents on Economics 62880, London School of Economics and Political Science, LSE Library.
- Yang, Dong & Li, Hui & Hu, Yaogang & Zhao, Jie & Xiao, Hongwei & Lan, Yongsen, 2016. "Vibration condition monitoring system for wind turbine bearings based on noise suppression with multi-point data fusion," Renewable Energy, Elsevier, vol. 92(C), pages 104-116.
- Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
- Yang, Wenxian & Court, Richard & Jiang, Jiesheng, 2013. "Wind turbine condition monitoring by the approach of SCADA data analysis," Renewable Energy, Elsevier, vol. 53(C), pages 365-376.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Maria Rosaria Termite & Piero Baraldi & Sameer Al-Dahidi & Luca Bellani & Michele Compare & Enrico Zio, 2019. "A Never-Ending Learning Method for Fault Diagnostics in Energy Systems Operating in Evolving Environments," Energies, MDPI, vol. 12(24), pages 1-26, December.
- Xihui Chen & Aimin Ji & Gang Cheng, 2019. "A Novel Deep Feature Learning Method Based on the Fused-Stacked AEs for Planetary Gear Fault Diagnosis," Energies, MDPI, vol. 12(23), pages 1-18, November.
- Isac Antônio dos Santos Areias & Luiz Eduardo Borges da Silva & Erik Leandro Bonaldi & Levy Ely de Lacerda de Oliveira & Germano Lambert-Torres & Vitor Almeida Bernardes, 2019. "Evaluation of Current Signature in Bearing Defects by Envelope Analysis of the Vibration in Induction Motors," Energies, MDPI, vol. 12(21), pages 1-15, October.
- Yolanda Vidal, 2023. "Artificial Intelligence for Wind Turbine Condition Monitoring," Energies, MDPI, vol. 16(4), pages 1-4, February.
- Lei Fu & Yiling Yang & Xiaolong Yao & Xufen Jiao & Tiantian Zhu, 2019. "A Regional Photovoltaic Output Prediction Method Based on Hierarchical Clustering and the mRMR Criterion," Energies, MDPI, vol. 12(20), pages 1-23, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Pan, Yubin & Hong, Rongjing & Chen, Jie & Wu, Weiwei, 2020. "A hybrid DBN-SOM-PF-based prognostic approach of remaining useful life for wind turbine gearbox," Renewable Energy, Elsevier, vol. 152(C), pages 138-154.
- Ana Rita Nunes & Hugo Morais & Alberto Sardinha, 2021. "Use of Learning Mechanisms to Improve the Condition Monitoring of Wind Turbine Generators: A Review," Energies, MDPI, vol. 14(21), pages 1-22, November.
- Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
- Xin Wu & Hong Wang & Guoqian Jiang & Ping Xie & Xiaoli Li, 2019. "Monitoring Wind Turbine Gearbox with Echo State Network Modeling and Dynamic Threshold Using SCADA Vibration Data," Energies, MDPI, vol. 12(6), pages 1-19, March.
- Dao, Phong B., 2022. "On Wilcoxon rank sum test for condition monitoring and fault detection of wind turbines," Applied Energy, Elsevier, vol. 318(C).
- Mohamed Benbouzid & Tarek Berghout & Nur Sarma & Siniša Djurović & Yueqi Wu & Xiandong Ma, 2021. "Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review," Energies, MDPI, vol. 14(18), pages 1-33, September.
- Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
- Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
- Alphan, H., 2021. "Modelling potential visibility of wind turbines: A geospatial approach for planning and impact mitigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
- Dao, Phong B., 2022. "Condition monitoring and fault diagnosis of wind turbines based on structural break detection in SCADA data," Renewable Energy, Elsevier, vol. 185(C), pages 641-654.
- Korkos, Panagiotis & Linjama, Matti & Kleemola, Jaakko & Lehtovaara, Arto, 2022. "Data annotation and feature extraction in fault detection in a wind turbine hydraulic pitch system," Renewable Energy, Elsevier, vol. 185(C), pages 692-703.
- Papatheou, Evangelos & Dervilis, Nikolaos & Maguire, Andrew E. & Campos, Carles & Antoniadou, Ifigeneia & Worden, Keith, 2017. "Performance monitoring of a wind turbine using extreme function theory," Renewable Energy, Elsevier, vol. 113(C), pages 1490-1502.
- Alphan, Hakan, 2024. "Incorporating visibility information into multi-criteria decision making (MCDM) for wind turbine deployment," Applied Energy, Elsevier, vol. 353(PB).
- Ravi Kumar Pandit & Davide Astolfi & Isidro Durazo Cardenas, 2023. "A Review of Predictive Techniques Used to Support Decision Making for Maintenance Operations of Wind Turbines," Energies, MDPI, vol. 16(4), pages 1-17, February.
- Aziz, Usama & Charbonnier, Sylvie & Bérenguer, Christophe & Lebranchu, Alexis & Prevost, Frederic, 2021. "Critical comparison of power-based wind turbine fault-detection methods using a realistic framework for SCADA data simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Jason Harold, Valentin Bertsch, Thomas Lawrence, and Magie Hall, 2021.
"Drivers of People's Preferences for Spatial Proximity to Energy Infrastructure Technologies: A Cross-country Analysis,"
The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
- Harold, Jason & Bertsch, Valentin & Lawrence, Thomas & Hall, Magie, 2018. "Drivers of people's preferences for spatial proximity to energy infrastructure technologies: a cross-country analysis," Papers WP583, Economic and Social Research Institute (ESRI).
- Hanna Szumilas-Kowalczyk & Renata Giedych, 2022. "Analysis of Regulatory Possibilities and Obstacles to Expand Renewable Energy and Preserve Landscape Quality in the Silesian Voivodship," Resources, MDPI, vol. 11(2), pages 1-32, February.
- Panagiotis Korkos & Jaakko Kleemola & Matti Linjama & Arto Lehtovaara, 2022. "Representation Learning for Detecting the Faults in a Wind Turbine Hydraulic Pitch System Using Deep Learning," Energies, MDPI, vol. 15(24), pages 1-17, December.
- Zhan, Jun & Wu, Chengkun & Yang, Canqun & Miao, Qiucheng & Wang, Shilin & Ma, Xiandong, 2022. "Condition monitoring of wind turbines based on spatial-temporal feature aggregation networks," Renewable Energy, Elsevier, vol. 200(C), pages 751-766.
- Li, Yanting & Wu, Zhenyu, 2020. "A condition monitoring approach of multi-turbine based on VAR model at farm level," Renewable Energy, Elsevier, vol. 166(C), pages 66-80.
More about this item
Keywords
condition monitoring; wind turbine; variational mode decomposition; fisher score; permutation entropy; variable operational condition;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3085-:d:256520. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.