A zero-shot learning method for fault diagnosis under unknown working loads
Author
Abstract
Suggested Citation
DOI: 10.1007/s10845-019-01485-w
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Qiang Zhou & Ping Yan & Huayi Liu & Yang Xin, 2019. "A hybrid fault diagnosis method for mechanical components based on ontology and signal analysis," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1693-1715, April.
- Cong Wang & Meng Gan & Chang’an Zhu, 2018. "Fault feature extraction of rolling element bearings based on wavelet packet transform and sparse representation theory," Journal of Intelligent Manufacturing, Springer, vol. 29(4), pages 937-951, April.
- Semchedine Fedala & Didier Rémond & Rabah Zegadi & Ahmed Felkaoui, 2018. "Contribution of angular measurements to intelligent gear faults diagnosis," Journal of Intelligent Manufacturing, Springer, vol. 29(5), pages 1115-1131, June.
- Ebru Karakose & Muhsin Tunay Gencoglu & Mehmet Karakose & Orhan Yaman & Ilhan Aydin & Erhan Akin, 2018. "A new arc detection method based on fuzzy logic using S-transform for pantograph–catenary systems," Journal of Intelligent Manufacturing, Springer, vol. 29(4), pages 839-856, April.
- Pedro Santos & Jesús Maudes & Andres Bustillo, 2018. "Identifying maximum imbalance in datasets for fault diagnosis of gearboxes," Journal of Intelligent Manufacturing, Springer, vol. 29(2), pages 333-351, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- M. R. Pavan Kumar & Prabhu Jayagopal, 2023. "Context-sensitive lexicon for imbalanced text sentiment classification using bidirectional LSTM," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2123-2132, June.
- Ma, Chenyang & Wang, Xianzhi & Li, Yongbo & Cai, Zhiqiang, 2024. "Broad zero-shot diagnosis for rotating machinery with untrained compound faults," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rubén Medina & Jean Carlo Macancela & Pablo Lucero & Diego Cabrera & René-Vinicio Sánchez & Mariela Cerrada, 2022. "Gear and bearing fault classification under different load and speed by using Poincaré plot features and SVM," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1031-1055, April.
- Liu, Qing & Liu, Min & Zhou, Hanlu & Yan, Feng, 2022. "A multi-model fusion based non-ferrous metal price forecasting," Resources Policy, Elsevier, vol. 77(C).
- Jorge Maldonado-Correa & Marcelo Valdiviezo-Condolo & Estefanía Artigao & Sergio Martín-Martínez & Emilio Gómez-Lázaro, 2024. "Classification of Highly Imbalanced Supervisory Control and Data Acquisition Data for Fault Detection of Wind Turbine Generators," Energies, MDPI, vol. 17(7), pages 1-20, March.
- Andres Bustillo & Danil Yu. Pimenov & Mozammel Mia & Wojciech Kapłonek, 2021. "Machine-learning for automatic prediction of flatness deviation considering the wear of the face mill teeth," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 895-912, March.
- Shaohua Huang & Yu Guo & Nengjun Yang & Shanshan Zha & Daoyuan Liu & Weiguang Fang, 2021. "A weighted fuzzy C-means clustering method with density peak for anomaly detection in IoT-enabled manufacturing process," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1845-1861, October.
- Chuanxia Jian & Yinhui Ao, 2023. "Imbalanced fault diagnosis based on semi-supervised ensemble learning," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 3143-3158, October.
- Ke Zhao & Hongkai Jiang & Zhenghong Wu & Tengfei Lu, 2022. "A novel transfer learning fault diagnosis method based on Manifold Embedded Distribution Alignment with a little labeled data," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 151-165, January.
- Tian Wang & Meina Qiao & Mengyi Zhang & Yi Yang & Hichem Snoussi, 2020. "Data-driven prognostic method based on self-supervised learning approaches for fault detection," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1611-1619, October.
- Youngju Kim & Hoyeop Lee & Chang Ouk Kim, 2023. "A variational autoencoder for a semiconductor fault detection model robust to process drift due to incomplete maintenance," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 529-540, February.
- Yang Hui & Xuesong Mei & Gedong Jiang & Fei Zhao & Ziwei Ma & Tao Tao, 2022. "Assembly quality evaluation for linear axis of machine tool using data-driven modeling approach," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 753-769, March.
- Gang Wang & Feng Zhang & Bayi Cheng & Fang Fang, 2021. "DAMER: a novel diagnosis aggregation method with evidential reasoning rule for bearing fault diagnosis," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 1-20, January.
- Xiaoyin Nie & Gang Xie, 2021. "A novel normalized recurrent neural network for fault diagnosis with noisy labels," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1271-1288, June.
- Xiao Yang & Fengrong Bi & Yabing Jing & Xin Li & Guichang Zhang, 2022. "A Condition-Monitoring Approach for Diesel Engines Based on an Adaptive VMD and Sparse Representation Theory," Energies, MDPI, vol. 15(9), pages 1-20, May.
- Jie Yang & Shaowen Lu & Liangyong Wang, 2020. "Fused magnesia manufacturing process: a survey," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 327-350, February.
- Xuejun Zhao & Yong Qin & Changbo He & Limin Jia, 2022. "Underdetermined blind source extraction of early vehicle bearing faults based on EMD and kernelized correlation maximization," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 185-201, January.
- Tian, Jilun & Jiang, Yuchen & Zhang, Jiusi & Luo, Hao & Yin, Shen, 2024. "A novel data augmentation approach to fault diagnosis with class-imbalance problem," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
- He, Yuanbiao & Qiao, Zijian & Xie, Biaobiao & Ning, Siyuan & Li, Zhecong & Kumar, Anil & Lai, Zhihui, 2024. "Two-stage benefits of internal and external noise to enhance early fault detection of machinery by exciting fractional SR," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
- Zilong Zhuang & Liangxun Guo & Zizhao Huang & Yanning Sun & Wei Qin & Zhao-Hui Sun, 2021. "DyS-IENN: a novel multiclass imbalanced learning method for early warning of tardiness in rocket final assembly process," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2197-2207, December.
- Danil Yu Pimenov & Andres Bustillo & Szymon Wojciechowski & Vishal S. Sharma & Munish K. Gupta & Mustafa Kuntoğlu, 2023. "Artificial intelligence systems for tool condition monitoring in machining: analysis and critical review," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2079-2121, June.
- Xiaohan Chen & Beike Zhang & Dong Gao, 2021. "Bearing fault diagnosis base on multi-scale CNN and LSTM model," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 971-987, April.
More about this item
Keywords
Fault diagnosis; Zero-shot learning; Autoencoder; Unknown working load;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:31:y:2020:i:4:d:10.1007_s10845-019-01485-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.