IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v29y2018i1d10.1007_s10845-015-1101-1.html
   My bibliography  Save this article

Machining accuracy reliability analysis of multi-axis machine tool based on Monte Carlo simulation

Author

Listed:
  • Qiang Cheng

    (Beijing University of Technology
    Huazhong University of Science and Technology)

  • Hongwei Zhao

    (Beijing University of Technology)

  • Yongsheng Zhao

    (Beijing University of Technology)

  • Bingwei Sun

    (Beijing University of Technology)

  • Peihua Gu

    (Shantou University)

Abstract

Although machine tool can meet the specifications while it is new, after a long period of cutting operations, the abrasion of contact surfaces and deformation of structures will degrade the accuracy of machine tool due to the increase of the geometric errors in six freedoms. Therefore, how to maintain its accuracy for quality control of products is of crucial importance to machine tool. In this paper, machining accuracy reliability is defined as the ability to perform its specified machining accuracy under the stated conditions for a given period of time, and a new method to analyze the sensitivity of geometric errors to the machining accuracy reliability is proposed. By applying Multi-body system theory, a comprehensive volumetric model explains how individual geometric errors affect the machining accuracy (the coupling relationship) was established. Based on Monte Carlo mathematic simulation method, the models of the machining accuracy reliability and sensitivity analysis of machine tools were developed. By taking the machining accuracy reliability as a measure of the ability of machine tool and reliability sensitivity as a reference of optimizing the basic parameters of machine tools, an illustrative example of a three-axis machine tool was selected to demonstrate the effectiveness of the proposed method.

Suggested Citation

  • Qiang Cheng & Hongwei Zhao & Yongsheng Zhao & Bingwei Sun & Peihua Gu, 2018. "Machining accuracy reliability analysis of multi-axis machine tool based on Monte Carlo simulation," Journal of Intelligent Manufacturing, Springer, vol. 29(1), pages 191-209, January.
  • Handle: RePEc:spr:joinma:v:29:y:2018:i:1:d:10.1007_s10845-015-1101-1
    DOI: 10.1007/s10845-015-1101-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-015-1101-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-015-1101-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karadeniz, Halil & ToÄŸan, Vedat & Vrouwenvelder, Ton, 2009. "An integrated reliability-based design optimization of offshore towers," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1510-1516.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yao & He, Yihai & Ai, Jun & Wang, Chengcheng & Han, Xiao & Liao, Ruoyu & Yang, Xiuzhen, 2022. "Functional health prognosis approach of multi-station manufacturing system considering coupling operational factors," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    2. Antonio Caputi & Davide Russo, 2021. "The optimization of the control logic of a redundant six axis milling machine," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1441-1453, June.
    3. Chi Ma & Hongquan Gui & Jialan Liu, 2023. "Self learning-empowered thermal error control method of precision machine tools based on digital twin," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 695-717, February.
    4. Ye, Zhenggeng & Cai, Zhiqiang & Zhou, Fuli & Zhao, Jiangbin & Zhang, Pan, 2019. "Reliability analysis for series manufacturing system with imperfect inspection considering the interaction between quality and degradation," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 345-356.
    5. Ye, Zhenggeng & Yang, Hui & Cai, Zhiqiang & Si, Shubin & Zhou, Fuli, 2021. "Performance evaluation of serial-parallel manufacturing systems based on the impact of heterogeneous feedstocks on machine degradation," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    6. Yang Hui & Xuesong Mei & Gedong Jiang & Fei Zhao & Pengcheng Shen, 2020. "Assembly consistency improvement of straightness error of the linear axis based on the consistency degree and GA-MSVM-I-KM," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1429-1441, August.
    7. Zhiwei Zhao & Yingguang Li & Changqing Liu & James Gao, 2020. "On-line part deformation prediction based on deep learning," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 561-574, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leimeister, Mareike & Kolios, Athanasios, 2018. "A review of reliability-based methods for risk analysis and their application in the offshore wind industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1065-1076.
    2. Liu, Zhitao & Tan, CherMing & Leng, Feng, 2015. "A reliability-based design concept for lithium-ion battery pack in electric vehicles," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 169-177.
    3. Okoro, Aghatise & Khan, Faisal & Ahmed, Salim, 2023. "Dependency effect on the reliability-based design optimization of complex offshore structure," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    4. Ashuri, T. & Zaaijer, M.B. & Martins, J.R.R.A. & van Bussel, G.J.W. & van Kuik, G.A.M., 2014. "Multidisciplinary design optimization of offshore wind turbines for minimum levelized cost of energy," Renewable Energy, Elsevier, vol. 68(C), pages 893-905.
    5. Liu, Wang-Sheng & Cheung, Sai Hung, 2017. "Reliability based design optimization with approximate failure probability function in partitioned design space," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 602-611.
    6. ToÄŸan, Vedat & Karadeniz, Halil & DaloÄŸlu, AyÅŸe T., 2010. "An integrated framework including distinct algorithms for optimization of offshore towers under uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 847-858.
    7. Torii, A.J. & Lopez, R.H. & Miguel, L.F.F., 2019. "A second order SAP algorithm for risk and reliability based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:29:y:2018:i:1:d:10.1007_s10845-015-1101-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.