IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v34y2023i2d10.1007_s10845-021-01821-z.html
   My bibliography  Save this article

Self learning-empowered thermal error control method of precision machine tools based on digital twin

Author

Listed:
  • Chi Ma

    (Chongqing University
    Chongqing University)

  • Hongquan Gui

    (Chongqing University
    Chongqing University)

  • Jialan Liu

    (Chongqing University
    Chongqing University)

Abstract

To improve machining accuracy of complex parts, a self learning-empowered thermal error control method of precision machine tools is presented based on digital twin. The memory of thermal error is theoretically and numerically revealed by error mechanism analysis, and then the applicability of long-short-term memory (LSTM) neural network (NN) in the training of the self-learning error model is proved. To improve the predictive accuracy, the Bayesian optimization algorithm is used to optimize such hyper-parameters as the epoch size, batch size, and the number of hidden nodes of the LSTM NN model. Then the self-learning prediction model of thermal error is proposed based on Bayesian-LSTM NN. The fitting and prediction performance of the proposed Bayesian-LSTM NN is better than that of such models as the LSTM NN with random hyperparameters, back propagation NN, multiple linear regression analysis (MLRA), and least square support vector machine (LSSVM). Finally, the self learning-empowered error control method is proposed based on digital twin, and the Bayesian-LSTM NN error control model is embedded into the self learning-empowered error control framework to realize the real-time thermal error prediction and control. When the predicted thermal error is greater than the preset machining error, the control components are recalculated automatically, and inserted into the machining instructions. It is shown that the machining error can be reduced effectively by the self learning-empowered error control method, which is vital for precision machining of complex parts and improvement of the intelligence level.

Suggested Citation

  • Chi Ma & Hongquan Gui & Jialan Liu, 2023. "Self learning-empowered thermal error control method of precision machine tools based on digital twin," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 695-717, February.
  • Handle: RePEc:spr:joinma:v:34:y:2023:i:2:d:10.1007_s10845-021-01821-z
    DOI: 10.1007/s10845-021-01821-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-021-01821-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-021-01821-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xin Tong & Qiang Liu & Shiwei Pi & Yao Xiao, 2020. "Real-time machining data application and service based on IMT digital twin," Journal of Intelligent Manufacturing, Springer, vol. 31(5), pages 1113-1132, June.
    2. Wo Jae Lee & Kevin Xia & Nancy L. Denton & Bruno Ribeiro & John W. Sutherland, 2021. "Development of a speed invariant deep learning model with application to condition monitoring of rotating machinery," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 393-406, February.
    3. Pearce, Michael & Branke, Juergen, 2018. "Continuous multi-task Bayesian Optimisation with correlation," European Journal of Operational Research, Elsevier, vol. 270(3), pages 1074-1085.
    4. Jia Hao & Mengying Zhou & Guoxin Wang & Liangyue Jia & Yan Yan, 2020. "Design optimization by integrating limited simulation data and shape engineering knowledge with Bayesian optimization (BO-DK4DO)," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 2049-2067, December.
    5. Ziling Zhang & Ligang Cai & Qiang Cheng & Zhifeng Liu & Peihua Gu, 2019. "A geometric error budget method to improve machining accuracy reliability of multi-axis machine tools," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 495-519, February.
    6. Qiang Cheng & Hongwei Zhao & Yongsheng Zhao & Bingwei Sun & Peihua Gu, 2018. "Machining accuracy reliability analysis of multi-axis machine tool based on Monte Carlo simulation," Journal of Intelligent Manufacturing, Springer, vol. 29(1), pages 191-209, January.
    7. He, Feifei & Zhou, Jianzhong & Feng, Zhong-kai & Liu, Guangbiao & Yang, Yuqi, 2019. "A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm," Applied Energy, Elsevier, vol. 237(C), pages 103-116.
    8. Byeongwoo Jeon & Joo-Sung Yoon & Jumyung Um & Suk-Hwan Suh, 2020. "The architecture development of Industry 4.0 compliant smart machine tool system (SMTS)," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1837-1859, December.
    9. Germán González Rodríguez & Jose M. Gonzalez-Cava & Juan Albino Méndez Pérez, 2020. "An intelligent decision support system for production planning based on machine learning," Journal of Intelligent Manufacturing, Springer, vol. 31(5), pages 1257-1273, June.
    10. Te-Hsiu Sun & Fang-Cheng Tien & Fang-Chih Tien & Ren-Jieh Kuo, 2016. "Automated thermal fuse inspection using machine vision and artificial neural networks," Journal of Intelligent Manufacturing, Springer, vol. 27(3), pages 639-651, June.
    11. A. J. H. Redelinghuys & A. H. Basson & K. Kruger, 2020. "A six-layer architecture for the digital twin: a manufacturing case study implementation," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1383-1402, August.
    12. Yakun Jiang & Jihong Chen & Huicheng Zhou & Jianzhong Yang & Guangda Xu, 2020. "Nonlinear time-series modeling of feed drive system based on motion states classification," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1935-1948, December.
    13. Huixin Tian & Daixu Ren & Kun Li & Zhen Zhao, 2021. "An adaptive update model based on improved Long Short Term Memory for online prediction of vibration signal," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 37-49, January.
    14. Konstantinos Mykoniatis & Gregory A. Harris, 2021. "A digital twin emulator of a modular production system using a data-driven hybrid modeling and simulation approach," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1899-1911, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ayman AboElHassan & Soumaya Yacout, 2023. "A digital shadow framework using distributed system concepts," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3579-3598, December.
    2. Antonio Caputi & Davide Russo, 2021. "The optimization of the control logic of a redundant six axis milling machine," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1441-1453, June.
    3. Ahmed Ktari & Mohamed El Mansori, 2022. "Digital twin of functional gating system in 3D printed molds for sand casting using a neural network," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 897-909, March.
    4. Benjamin Lutz & Dominik Kisskalt & Andreas Mayr & Daniel Regulin & Matteo Pantano & Jörg Franke, 2021. "In-situ identification of material batches using machine learning for machining operations," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1485-1495, June.
    5. PengYu Wang & Wen-An Yang & YouPeng You, 2023. "A cyber-physical prototype system in augmented reality using RGB-D camera for CNC machining simulation," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3637-3658, December.
    6. Ye, Zhenggeng & Yang, Hui & Cai, Zhiqiang & Si, Shubin & Zhou, Fuli, 2021. "Performance evaluation of serial-parallel manufacturing systems based on the impact of heterogeneous feedstocks on machine degradation," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    7. Li, Yao & He, Yihai & Ai, Jun & Wang, Chengcheng & Han, Xiao & Liao, Ruoyu & Yang, Xiuzhen, 2022. "Functional health prognosis approach of multi-station manufacturing system considering coupling operational factors," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    8. Fang, Ping & Fu, Wenlong & Wang, Kai & Xiong, Dongzhen & Zhang, Kai, 2022. "A compositive architecture coupling outlier correction, EWT, nonlinear Volterra multi-model fusion with multi-objective optimization for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 307(C).
    9. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    10. Yang, Ting & Zhao, Liyuan & Li, Wei & Zomaya, Albert Y., 2021. "Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning," Energy, Elsevier, vol. 235(C).
    11. Aniket Nagargoje & Pavan Kumar Kankar & Prashant Kumar Jain & Puneet Tandon, 2023. "Application of artificial intelligence techniques in incremental forming: a state-of-the-art review," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 985-1002, March.
    12. Xinyu Suo & Jian Liu & Licheng Dong & Chen Shengfeng & Lu Enhui & Chen Ning, 2022. "A machine vision-based defect detection system for nuclear-fuel rod groove," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1649-1663, August.
    13. Hassan Alimam & Giovanni Mazzuto & Marco Ortenzi & Filippo Emanuele Ciarapica & Maurizio Bevilacqua, 2023. "Intelligent Retrofitting Paradigm for Conventional Machines towards the Digital Triplet Hierarchy," Sustainability, MDPI, vol. 15(2), pages 1-30, January.
    14. Dong, Hanjiang & Zhu, Jizhong & Li, Shenglin & Wu, Wanli & Zhu, Haohao & Fan, Junwei, 2023. "Short-term residential household reactive power forecasting considering active power demand via deep Transformer sequence-to-sequence networks," Applied Energy, Elsevier, vol. 329(C).
    15. Chen, Qian & He, Peng & Yu, Chuanjin & Zhang, Xiaochi & He, Jiayong & Li, Yongle, 2023. "Multi-step short-term wind speed predictions employing multi-resolution feature fusion and frequency information mining," Renewable Energy, Elsevier, vol. 215(C).
    16. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Zhang, Yi & Zhao, Zhipeng & Lu, Jia, 2022. "Wasserstein metric-based two-stage distributionally robust optimization model for optimal daily peak shaving dispatch of cascade hydroplants under renewable energy uncertainties," Energy, Elsevier, vol. 260(C).
    17. Cheng, Xianda & Zheng, Haoran & Dong, Wei & Yang, Xuesen, 2023. "Performance prediction of marine intercooled cycle gas turbine based on expanded similarity parameters," Energy, Elsevier, vol. 265(C).
    18. Donghun Lee, 2022. "Knowledge Gradient: Capturing Value of Information in Iterative Decisions under Uncertainty," Mathematics, MDPI, vol. 10(23), pages 1-20, November.
    19. Zander, Bennet & Lange, Kerstin & Haasis, Hans-Dietrich, 2021. "Designing the data supply chain of a smart construction factory," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Ringle, Christian M. & Blecker, Thorsten (ed.), Adapting to the Future: How Digitalization Shapes Sustainable Logistics and Resilient Supply Chain Management. Proceedings of the Hamburg Internationa, volume 31, pages 41-62, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    20. Yin, Linfei & Xie, Jiaxing, 2021. "Multi-temporal-spatial-scale temporal convolution network for short-term load forecasting of power systems," Applied Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:34:y:2023:i:2:d:10.1007_s10845-021-01821-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.