IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v29y2018i5d10.1007_s10845-015-1162-1.html
   My bibliography  Save this article

Contribution of angular measurements to intelligent gear faults diagnosis

Author

Listed:
  • Semchedine Fedala

    (Setif -1- University)

  • Didier Rémond

    (LaMCoS, INSA-Lyon)

  • Rabah Zegadi

    (Setif -1- University)

  • Ahmed Felkaoui

    (Setif -1- University)

Abstract

Currently, work on the automation of vibration diagnosis is mainly based on indicators extracted from Time sampled Acceleration signals. There are other attractive alternatives such as those based on Angle synchronized measurements, which can provide a considerable number of more relevant and diverse indicators and, thus, lead to better performance in gear fault classification. The diversity of angular measurements (Instantaneous Angular Speed, Transmission Error and Angular sampled Acceleration) represents potential sources of relevant information in fault detection and diagnosis systems. These complementary measurements of existing signals or new relevant signals allow the construction of Feature Vector (FV) offering robust and effective classification methods even for different or non-stationary running speed conditions. In this paper, we propose to build several FVs based on indicators derived from the angular techniques to compare them to the ones calculated from the time signals, proving their superior performance in detection and identification of gear faults. It will be a question to demonstrate the effectiveness of angular indicators in increasing classification performances, using a supervised classifier based on Artificial Neural Networks and thus determining the most suitable signals.

Suggested Citation

  • Semchedine Fedala & Didier Rémond & Rabah Zegadi & Ahmed Felkaoui, 2018. "Contribution of angular measurements to intelligent gear faults diagnosis," Journal of Intelligent Manufacturing, Springer, vol. 29(5), pages 1115-1131, June.
  • Handle: RePEc:spr:joinma:v:29:y:2018:i:5:d:10.1007_s10845-015-1162-1
    DOI: 10.1007/s10845-015-1162-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-015-1162-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-015-1162-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiping Gao & Liang Gao & Xinyu Li & Yuwei Zheng, 2020. "A zero-shot learning method for fault diagnosis under unknown working loads," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 899-909, April.
    2. Shaohua Huang & Yu Guo & Nengjun Yang & Shanshan Zha & Daoyuan Liu & Weiguang Fang, 2021. "A weighted fuzzy C-means clustering method with density peak for anomaly detection in IoT-enabled manufacturing process," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1845-1861, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:29:y:2018:i:5:d:10.1007_s10845-015-1162-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.