IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v32y2021i8d10.1007_s10845-020-01631-9.html
   My bibliography  Save this article

DyS-IENN: a novel multiclass imbalanced learning method for early warning of tardiness in rocket final assembly process

Author

Listed:
  • Zilong Zhuang

    (Shanghai Jiao Tong University)

  • Liangxun Guo

    (Shanghai Jiao Tong University)

  • Zizhao Huang

    (Shanghai Jiao Tong University)

  • Yanning Sun

    (Shanghai Jiao Tong University)

  • Wei Qin

    (Shanghai Jiao Tong University)

  • Zhao-Hui Sun

    (Shanghai Jiao Tong University)

Abstract

Establishing an effective early warning mechanism for the rocket final assembly process (RFAP) is crucial for the timely delivery of rockets and the reduction of additional production costs. To solve the unsystematic design of warning indicators and warning levels in RFAP and address the problem of low warning accuracy caused by imbalanced data distribution, this paper redesigns the warning indicators and warning levels in a systematic way, and develops a novel multiclass imbalanced learning method based on dynamic sampling algorithm (DyS) and improved ensemble neural network (IENN). The DyS algorithm dynamically determines the training set after oversampling the minority class, while the IENN can effectively suppress the oscillation in the iterative process of the DyS algorithm and improve the overall classification accuracy by removing the redundant and ineffective networks from the ensemble neural network. The experiment results indicate that the proposed method outperforms other methods in terms of accuracy and stability for early warning of tardiness in RFAP.

Suggested Citation

  • Zilong Zhuang & Liangxun Guo & Zizhao Huang & Yanning Sun & Wei Qin & Zhao-Hui Sun, 2021. "DyS-IENN: a novel multiclass imbalanced learning method for early warning of tardiness in rocket final assembly process," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2197-2207, December.
  • Handle: RePEc:spr:joinma:v:32:y:2021:i:8:d:10.1007_s10845-020-01631-9
    DOI: 10.1007/s10845-020-01631-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-020-01631-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-020-01631-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiang Zhou & Ping Yan & Huayi Liu & Yang Xin, 2019. "A hybrid fault diagnosis method for mechanical components based on ontology and signal analysis," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1693-1715, April.
    2. Xu Tan & Lining Xing & Zhaoquan Cai & Gaige Wang, 2020. "Analysis of production cycle-time distribution with a big-data approach," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1889-1897, December.
    3. Feyza Gürbüz & İkbal Eski & Berrin Denizhan & Cihan Dağlı, 2019. "Prediction of damage parameters of a 3PL company via data mining and neural networks," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1437-1449, March.
    4. Junliang Wang & Jie Zhang, 2016. "Big data analytics for forecasting cycle time in semiconductor wafer fabrication system," International Journal of Production Research, Taylor & Francis Journals, vol. 54(23), pages 7231-7244, December.
    5. Carlos Gonzalez-Val & Adrian Pallas & Veronica Panadeiro & Alvaro Rodriguez, 2020. "A convolutional approach to quality monitoring for laser manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 789-795, March.
    6. Amit Kumar Jain & Bhupesh Kumar Lad, 2019. "A novel integrated tool condition monitoring system," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1423-1436, March.
    7. Arash Ramezani & Hendrik Rothe, 2017. "Simulation-Based Early Prediction of Rocket, Artillery, and Mortar Trajectories and Real-Time Optimization for Counter-RAM Systems," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-8, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu-Cheng Wang & Horng-Ren Tsai & Toly Chen, 2021. "A Selectively Fuzzified Back Propagation Network Approach for Precisely Estimating the Cycle Time Range in Wafer Fabrication," Mathematics, MDPI, vol. 9(12), pages 1-18, June.
    2. Rubén Medina & Jean Carlo Macancela & Pablo Lucero & Diego Cabrera & René-Vinicio Sánchez & Mariela Cerrada, 2022. "Gear and bearing fault classification under different load and speed by using Poincaré plot features and SVM," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1031-1055, April.
    3. Purva Grover & Arpan Kumar Kar, 2017. "Big Data Analytics: A Review on Theoretical Contributions and Tools Used in Literature," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 18(3), pages 203-229, September.
    4. Beixin Xia & Tong Tian & Yan Gao & Mingyue Zhang & Yunfang Peng, 2022. "A Dynamic Dispatching Method for Large-Scale Interbay Material Handling Systems of Semiconductor FAB," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
    5. Matteo Bugatti & Bianca Maria Colosimo, 2022. "Towards real-time in-situ monitoring of hot-spot defects in L-PBF: a new classification-based method for fast video-imaging data analysis," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 293-309, January.
    6. Lixin Cheng & Qiuhua Tang & Zikai Zhang & Shiqian Wu, 2021. "Data mining for fast and accurate makespan estimation in machining workshops," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 483-500, February.
    7. Raut, Rakesh D. & Mangla, Sachin Kumar & Narwane, Vaibhav S. & Dora, Manoj & Liu, Mengqi, 2021. "Big Data Analytics as a mediator in Lean, Agile, Resilient, and Green (LARG) practices effects on sustainable supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    8. Ke Zhao & Hongkai Jiang & Zhenghong Wu & Tengfei Lu, 2022. "A novel transfer learning fault diagnosis method based on Manifold Embedded Distribution Alignment with a little labeled data," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 151-165, January.
    9. Deyuan Ma & Ping Jiang & Leshi Shu & Zhaoliang Gong & Yilin Wang & Shaoning Geng, 2024. "Online porosity prediction in laser welding of aluminum alloys based on a multi-fidelity deep learning framework," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 55-73, January.
    10. Md Doulotuzzaman Xames & Fariha Kabir Torsha & Ferdous Sarwar, 2023. "A systematic literature review on recent trends of machine learning applications in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2529-2555, August.
    11. Chenglin Li & Baohai Wu & Zhao Zhang & Ying Zhang, 2023. "A novel process planning method of 3 + 2-axis additive manufacturing for aero-engine blade based on machine learning," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 2027-2042, April.
    12. Shijie Guo & Shufeng Tang & Dongsheng Zhang, 2019. "A Recognition Methodology for the Key Geometric Errors of a Multi-Axis Machine Tool Based on Accuracy Retentivity Analysis," Complexity, Hindawi, vol. 2019, pages 1-21, November.
    13. Yiping Gao & Liang Gao & Xinyu Li & Yuwei Zheng, 2020. "A zero-shot learning method for fault diagnosis under unknown working loads," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 899-909, April.
    14. Ammar H. Elsheikh & Taher A. Shehabeldeen & Jianxin Zhou & Ezzat Showaib & Mohamed Abd Elaziz, 2021. "Prediction of laser cutting parameters for polymethylmethacrylate sheets using random vector functional link network integrated with equilibrium optimizer," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1377-1388, June.
    15. M. López-Campos & F. Kristjanpoller & P. Viveros & R. Pascual, 2018. "Reliability Assessment Methodology for Massive Manufacturing Using Multi-Function Equipment," Complexity, Hindawi, vol. 2018, pages 1-8, February.
    16. Claudio Vitari & Elisabetta Raguseo, 2019. "Big data analytics business value and firm performance: Linking with environmental context," Post-Print hal-02293765, HAL.
    17. Marvin Carl May & Alexander Albers & Marc David Fischer & Florian Mayerhofer & Louis Schäfer & Gisela Lanza, 2021. "Queue Length Forecasting in Complex Manufacturing Job Shops," Forecasting, MDPI, vol. 3(2), pages 1-17, May.
    18. Nadine Bachmann & Shailesh Tripathi & Manuel Brunner & Herbert Jodlbauer, 2022. "The Contribution of Data-Driven Technologies in Achieving the Sustainable Development Goals," Sustainability, MDPI, vol. 14(5), pages 1-33, February.
    19. Chia-Yu Hsu & Ju-Chien Chien, 2022. "Ensemble convolutional neural networks with weighted majority for wafer bin map pattern classification," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 831-844, March.
    20. He, Yuanbiao & Qiao, Zijian & Xie, Biaobiao & Ning, Siyuan & Li, Zhecong & Kumar, Anil & Lai, Zhihui, 2024. "Two-stage benefits of internal and external noise to enhance early fault detection of machinery by exciting fractional SR," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:32:y:2021:i:8:d:10.1007_s10845-020-01631-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.