IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v31y2020i1d10.1007_s10845-018-1443-6.html
   My bibliography  Save this article

Intelligent approach for process modelling and optimization on electrical discharge machining of polycrystalline diamond

Author

Listed:
  • Pauline Ong

    (Universiti Tun Hussein Onn Malaysia (UTHM))

  • Chon Haow Chong

    (Universiti Tun Hussein Onn Malaysia (UTHM))

  • Mohammad Zulafif Rahim

    (Universiti Tun Hussein Onn Malaysia (UTHM))

  • Woon Kiow Lee

    (Universiti Tun Hussein Onn Malaysia (UTHM))

  • Chee Kiong Sia

    (Universiti Tun Hussein Onn Malaysia (UTHM))

  • Muhammad Ariff Haikal Ahmad

    (Universiti Tun Hussein Onn Malaysia (UTHM))

Abstract

Polycrystalline diamond (PCD) is increasingly becomes an important material used in the industry for cutting tools of difficult-to-machine materials due to its excellent characteristics such as hardness, toughness and wear resistance. However, its applications are restricted because of the PCD material is difficult to machine. Therefore, electrical discharge machining (EDM) is an ideal method suitable for PCD materials due to its non-contact process nature. The performance of EDM, however, is significantly influenced by its process parameters and type of electrode. In this study, soft computing technique was utilized to optimize the performance of the EDM in roughing condition for eroding PCD with copper tungsten or copper nickel electrode. Central composite design with five levels of three machining parameters viz. peak current, pulse interval and pulse duration has been used to design the experimental matrix. The EDM experiment was conducted based on the design experimental matrix. Subsequently, the effectiveness of EDM on shaping PCD with copper tungsten and copper nickel was evaluated in terms of material removal rate (MRR) and electrode wear rate (EWR). It was found that copper tungsten electrode gave lower EWR, in comparison with the copper nickel electrode. The predictive model of radial basis function neural network (RBFNN) was developed to predict the MRR and EWR of the EDM process. The prominent predictive ability of RBFNN was confirmed as the prediction errors in terms of mean-squared error were found within the range of 6.47E−05 to 7.29E−06. Response surface plot was drawn to study the influences of machining parameters of EDM for shaping PCD with copper tungsten and copper nickel. Subsequently, moth search algorithm (MSA) was used to determine the optimal machining parameters, such that the MRR was maximized and EWR was minimized. Based on the obtained optimal parameters, confirmation test with the absolute error within the range of 1.41E−06 to 5.10E−05 validated the optimization capability of MSA.

Suggested Citation

  • Pauline Ong & Chon Haow Chong & Mohammad Zulafif Rahim & Woon Kiow Lee & Chee Kiong Sia & Muhammad Ariff Haikal Ahmad, 2020. "Intelligent approach for process modelling and optimization on electrical discharge machining of polycrystalline diamond," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 227-247, January.
  • Handle: RePEc:spr:joinma:v:31:y:2020:i:1:d:10.1007_s10845-018-1443-6
    DOI: 10.1007/s10845-018-1443-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-018-1443-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-018-1443-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jack P. C. Kleijnen, 2015. "Response Surface Methodology," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104, Springer.
    2. Kumar Abhishek & V. Rakesh Kumar & Saurav Datta & Siba Sankar Mahapatra, 2017. "Parametric appraisal and optimization in machining of CFRP composites by using TLBO (teaching–learning based optimization algorithm)," Journal of Intelligent Manufacturing, Springer, vol. 28(8), pages 1769-1785, December.
    3. Hamed Pashazadeh & Yousof Gheisari & Mohsen Hamedi, 2016. "Statistical modeling and optimization of resistance spot welding process parameters using neural networks and multi-objective genetic algorithm," Journal of Intelligent Manufacturing, Springer, vol. 27(3), pages 549-559, June.
    4. Chinmaya P. Mohanty & Siba Sankar Mahapatra & Manas Ranjan Singh, 2016. "A particle swarm approach for multi-objective optimization of electrical discharge machining process," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1171-1190, December.
    5. Nurezayana Zainal & Azlan Mohd Zain & Nor Haizan Mohamed Radzi & Muhamad Razib Othman, 2016. "Glowworm swarm optimization (GSO) for optimization of machining parameters," Journal of Intelligent Manufacturing, Springer, vol. 27(4), pages 797-804, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Li & Yuan-Hua Yang & Qing An & Hong Lei & Qian Deng & Gai-Ge Wang, 2022. "Moth Search: Variants, Hybrids, and Applications," Mathematics, MDPI, vol. 10(21), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ohyung Kwon & Hyung Giun Kim & Min Ji Ham & Wonrae Kim & Gun-Hee Kim & Jae-Hyung Cho & Nam Il Kim & Kangil Kim, 2020. "A deep neural network for classification of melt-pool images in metal additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 375-386, February.
    2. Raghav Prasad Parouha & Pooja Verma, 2022. "An innovative hybrid algorithm for bound-unconstrained optimization problems and applications," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1273-1336, June.
    3. Elango Natarajan & Varadaraju Kaviarasan & Wei Hong Lim & Sew Sun Tiang & S. Parasuraman & Sangeetha Elango, 2020. "Non-dominated sorting modified teaching–learning-based optimization for multi-objective machining of polytetrafluoroethylene (PTFE)," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 911-935, April.
    4. Shen-Tsu Wang, 2016. "Integrating grey sequencing with the genetic algorithm--immune algorithm to optimise touch panel cover glass polishing process parameter design," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4882-4893, August.
    5. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    6. Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.
    7. Kaushik, Lav Kumar & Muthukumar, P., 2020. "Thermal and economic performance assessments of waste cooking oil /kerosene blend operated pressure cook-stove with porous radiant burner," Energy, Elsevier, vol. 206(C).
    8. Antonio Del Prete & Rodolfo Franchi & Stefania Cacace & Quirico Semeraro, 2020. "Optimization of cutting conditions using an evolutive online procedure," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 481-499, February.
    9. Yaman, Hayri & Yesilyurt, Murat Kadir & Uslu, Samet, 2022. "Simultaneous optimization of multiple engine parameters of a 1-heptanol / gasoline fuel blends operated a port-fuel injection spark-ignition engine using response surface methodology approach," Energy, Elsevier, vol. 238(PC).
    10. Visva Bharati Barua & Mariya Munir, 2021. "A Review on Synchronous Microalgal Lipid Enhancement and Wastewater Treatment," Energies, MDPI, vol. 14(22), pages 1-20, November.
    11. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    12. D. M. D. Rasika & Janak K. Vidanarachchi & Selma F. Luiz & Denise Rosane Perdomo Azeredo & Adriano G. Cruz & Chaminda Senaka Ranadheera, 2021. "Probiotic Delivery through Non-Dairy Plant-Based Food Matrices," Agriculture, MDPI, vol. 11(7), pages 1-23, June.
    13. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    14. Muhammad, Gul & Potchamyou Ngatcha, Ange Douglas & Lv, Yongkun & Xiong, Wenlong & El-Badry, Yaser A. & Asmatulu, Eylem & Xu, Jingliang & Alam, Md Asraful, 2022. "Enhanced biodiesel production from wet microalgae biomass optimized via response surface methodology and artificial neural network," Renewable Energy, Elsevier, vol. 184(C), pages 753-764.
    15. Renzi, Massimiliano & Bietresato, Marco & Mazzetto, Fabrizio, 2016. "An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends," Energy, Elsevier, vol. 115(P1), pages 1069-1080.
    16. Lei Zhou & Tianjian Li & Wenjia Zheng & Zhongdian Zhang & Zhenglong Lei & Laijun Wu & Shiliang Zhu & Wenming Wang, 2022. "Online monitoring of resistance spot welding electrode wear state based on dynamic resistance," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 91-101, January.
    17. Chamberlin Stéphane Azebaze Mboving & Zbigniew Hanzelka & Andrzej Firlit, 2022. "Analysis of the Factors Having an Influence on the LC Passive Harmonic Filter Work Efficiency," Energies, MDPI, vol. 15(5), pages 1-51, March.
    18. Lu Chen & Qincheng Chen & Pinhua Rao & Lili Yan & Alghashm Shakib & Guoqing Shen, 2018. "Formulating and Optimizing a Novel Biochar-Based Fertilizer for Simultaneous Slow-Release of Nitrogen and Immobilization of Cadmium," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    19. Biranchi Panda & K. Shankhwar & Akhil Garg & M. M. Savalani, 2019. "Evaluation of genetic programming-based models for simulating bead dimensions in wire and arc additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 809-820, February.
    20. Hasheminasab, M. & Kermani, M.J. & Nourazar, S.S. & Khodsiani, M.H., 2020. "A novel experimental based statistical study for water management in proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:31:y:2020:i:1:d:10.1007_s10845-018-1443-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.