IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v31y2020i4d10.1007_s10845-019-01486-9.html
   My bibliography  Save this article

Non-dominated sorting modified teaching–learning-based optimization for multi-objective machining of polytetrafluoroethylene (PTFE)

Author

Listed:
  • Elango Natarajan

    (UCSI University)

  • Varadaraju Kaviarasan

    (Sona College of Technology)

  • Wei Hong Lim

    (UCSI University)

  • Sew Sun Tiang

    (UCSI University)

  • S. Parasuraman

    (Monash University)

  • Sangeetha Elango

    (FTMS College)

Abstract

A non-dominated sorting modified teaching–learning-based optimization (NSMTLBO) is proposed to obtain the optimum solution for a multi-objective problem related to machining Polytetrafluoroethylene. Firstly, an experimental design is done and the L27 orthogonal array with three-level of cutting speed $$ \left( {V_{c} } \right) $$Vc, feed rate (f), depth of cut (ap) and nose radius $$ \left( {N_{r} } \right) $$Nr is formulated. A CNC turning machine is used to perform experiments with cemented carbide tool at an insert angle of 80° and the response variables known as surface finish and material removal rate are measured. A response surface model is rendered from the experimental results to derive the minimization function of surface roughness $$ \left( {R_{a} } \right) $$Ra and maximization function of material removal rate (MRR). Both optimization functions are solved simultaneously using NSMTLBO. A fuzzy decision maker is also integrated with NSMTLBO to determine the preferred optimum machining parameters from Pareto-front based on the relative importance level of each objective function. The best responses Ra = 2.2347 µm and MRR = 96.835 cm3/min are predicted at the optimum machining parameters of Vc = 160 mm/min, f = 0.5 mm/rev, ap = 0.98 mm and Nr = 0.8 mm. The proposed NSMTLBO is reported to outperform other six peer algorithms due to its excellent capability in generating the Pareto-fronts which are more uniformly distributed and resulted higher percentage of non-dominated solutions. Furthermore, the prediction results of NSMTLBO are validated experimentally and it is reported that the performance deviations between the predicted and actual results are lower than 3.7%, implying the applicability of proposed work in real-world machining applications.

Suggested Citation

  • Elango Natarajan & Varadaraju Kaviarasan & Wei Hong Lim & Sew Sun Tiang & S. Parasuraman & Sangeetha Elango, 2020. "Non-dominated sorting modified teaching–learning-based optimization for multi-objective machining of polytetrafluoroethylene (PTFE)," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 911-935, April.
  • Handle: RePEc:spr:joinma:v:31:y:2020:i:4:d:10.1007_s10845-019-01486-9
    DOI: 10.1007/s10845-019-01486-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-019-01486-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-019-01486-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dashuang Li & Chaoyong Zhang & Xinyu Shao & Wenwen Lin, 2016. "A multi-objective TLBO algorithm for balancing two-sided assembly line with multiple constraints," Journal of Intelligent Manufacturing, Springer, vol. 27(4), pages 725-739, August.
    2. R. Venkata Rao & Dhiraj P. Rai & J. Balic, 2019. "Multi-objective optimization of abrasive waterjet machining process using Jaya algorithm and PROMETHEE Method," Journal of Intelligent Manufacturing, Springer, vol. 30(5), pages 2101-2127, June.
    3. Kumar Abhishek & V. Rakesh Kumar & Saurav Datta & Siba Sankar Mahapatra, 2017. "Parametric appraisal and optimization in machining of CFRP composites by using TLBO (teaching–learning based optimization algorithm)," Journal of Intelligent Manufacturing, Springer, vol. 28(8), pages 1769-1785, December.
    4. Chinmaya P. Mohanty & Siba Sankar Mahapatra & Manas Ranjan Singh, 2016. "A particle swarm approach for multi-objective optimization of electrical discharge machining process," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1171-1190, December.
    5. Mohamed Arezki Mellal & Edward J. Williams, 2016. "Parameter optimization of advanced machining processes using cuckoo optimization algorithm and hoopoe heuristic," Journal of Intelligent Manufacturing, Springer, vol. 27(5), pages 927-942, October.
    6. R. Venkata Rao & Dhiraj P. Rai & J. Balic, 2018. "Multi-objective optimization of machining and micro-machining processes using non-dominated sorting teaching–learning-based optimization algorithm," Journal of Intelligent Manufacturing, Springer, vol. 29(8), pages 1715-1737, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenjie Wang & Guangdong Tian & Gang Yuan & Duc Truong Pham, 2023. "Energy-time tradeoffs for remanufacturing system scheduling using an invasive weed optimization algorithm," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1065-1083, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pauline Ong & Chon Haow Chong & Mohammad Zulafif Rahim & Woon Kiow Lee & Chee Kiong Sia & Muhammad Ariff Haikal Ahmad, 2020. "Intelligent approach for process modelling and optimization on electrical discharge machining of polycrystalline diamond," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 227-247, January.
    2. Daniele Marini & Jonathan R. Corney, 2021. "Concurrent optimization of process parameters and product design variables for near net shape manufacturing processes," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 611-631, February.
    3. Mellal, Mohamed Arezki & Zio, Enrico, 2020. "System reliability-redundancy optimization with cold-standby strategy by an enhanced nest cuckoo optimization algorithm," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    4. Héctor Migallón & Akram Belazi & José-Luis Sánchez-Romero & Héctor Rico & Antonio Jimeno-Morenilla, 2020. "Settings-Free Hybrid Metaheuristic General Optimization Methods," Mathematics, MDPI, vol. 8(7), pages 1-25, July.
    5. Anshuman Kumar Sahu & Siba Sankar Mahapatra, 2021. "Prediction and optimization of performance measures in electrical discharge machining using rapid prototyping tool electrodes," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2125-2145, December.
    6. Huifeng Su & Renzhuang Li & Ming Yang, 2021. "An experimental study of modified physical performance test of low-temperature epoxy grouting material for grouting joints with tenon and mortise," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 667-677, March.
    7. Wenzhu Liao & Tong Wang, 2018. "Promoting Green and Sustainability: A Multi-Objective Optimization Method for the Job-Shop Scheduling Problem," Sustainability, MDPI, vol. 10(11), pages 1-19, November.
    8. Neeraj Kumar Bhoi & Harpreet Singh & Saurabh Pratap & Pramod K. Jain, 2022. "Chemical reaction optimization algorithm for machining parameter of abrasive water jet cutting," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 350-363, March.
    9. Soleimani, Borhan & Keihan Asl, Dariush & Estakhr, Javad & Seifi, Ali Reza, 2022. "Integrated optimization of multi-carrier energy systems: Water-energy nexus case," Energy, Elsevier, vol. 257(C).
    10. Ohyung Kwon & Hyung Giun Kim & Min Ji Ham & Wonrae Kim & Gun-Hee Kim & Jae-Hyung Cho & Nam Il Kim & Kangil Kim, 2020. "A deep neural network for classification of melt-pool images in metal additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 375-386, February.
    11. N. A. Fountas & R. Benhadj-Djilali & C. I. Stergiou & N. M. Vaxevanidis, 2019. "An integrated framework for optimizing sculptured surface CNC tool paths based on direct software object evaluation and viral intelligence," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1581-1599, April.
    12. Lixia Zhu & Zeqiang Zhang & Yi Wang & Ning Cai, 2020. "On the end-of-life state oriented multi-objective disassembly line balancing problem," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1403-1428, August.
    13. Raghav Prasad Parouha & Pooja Verma, 2022. "An innovative hybrid algorithm for bound-unconstrained optimization problems and applications," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1273-1336, June.
    14. Mohamed Arezki Mellal & Enrico Zio, 2019. "An adaptive cuckoo optimization algorithm for system design optimization under failure dependencies," Journal of Risk and Reliability, , vol. 233(6), pages 1099-1105, December.
    15. Byeongwoo Jeon & Joo-Sung Yoon & Jumyung Um & Suk-Hwan Suh, 2020. "The architecture development of Industry 4.0 compliant smart machine tool system (SMTS)," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1837-1859, December.
    16. R. Venkata Rao & Dhiraj P. Rai & J. Balic, 2019. "Multi-objective optimization of abrasive waterjet machining process using Jaya algorithm and PROMETHEE Method," Journal of Intelligent Manufacturing, Springer, vol. 30(5), pages 2101-2127, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:31:y:2020:i:4:d:10.1007_s10845-019-01486-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.