IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v48y2000i1p65-72.html
   My bibliography  Save this article

Optimizing Over the Efficient Set Using a Top-Down Search of Faces

Author

Listed:
  • Serpil Sayin

    (Koç University, College of Administrative Sciences and Economics, Istinye, 80860 Istanbul, Turkey)

Abstract

The problem of optimizing a linear function over the efficient set of a multiple objective linear programming problem is studied. The decomposition of the efficient set into efficient faces is used as the basis of a search-based algorithm to solve this problem. The faces of the feasible region are characterized by the set of constraints that hold as equality in that face. The search is conducted over the indices of the constraints in a way that explores faces of possibly higher dimension first. Computational tests are performed to establish the behavior of the algorithm when the objective function is built according to different schemes that have received attention in the literature. The results indicate that different objective function types may lead to varying computation time requirements. In general, computational requirements of the algorithm increase significantly with problem size. A heuristic modification of the algorithm is proposed to solve large problems within reasonable time limits. Tests to measure the quality of the heuristic solutions show that the heuristic approach constitutes a practical alternative for finding good solutions for the problem.

Suggested Citation

  • Serpil Sayin, 2000. "Optimizing Over the Efficient Set Using a Top-Down Search of Faces," Operations Research, INFORMS, vol. 48(1), pages 65-72, February.
  • Handle: RePEc:inm:oropre:v:48:y:2000:i:1:p:65-72
    DOI: 10.1287/opre.48.1.65.12449
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.48.1.65.12449
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.48.1.65.12449?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dessouky, M. I. & Ghiassi, M. & Davis, W. J., 1986. "Estimates of the minimum nondominated criterion values in multiple-criteria decision-making," Engineering Costs and Production Economics, Elsevier, vol. 10(2), pages 95-104, June.
    2. Pekka Korhonen & Seppo Salo & Ralph E. Steuer, 1997. "A Heuristic for Estimating Nadir Criterion Values in Multiple Objective Linear Programming," Operations Research, INFORMS, vol. 45(5), pages 751-757, October.
    3. Harold P. Benson & Serpil Sayin, 1993. "A face search heuristic algorithm for optimizing over the efficient set," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(1), pages 103-116, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kahina Ghazli & Nicolas Gillis & Mustapha Moulaï, 2020. "Optimizing over the properly efficient set of convex multi-objective optimization problems," Annals of Operations Research, Springer, vol. 295(2), pages 575-604, December.
    2. S.T. Hackman & U. Passy, 2002. "Maximizing a Linear Fractional Function on a Pareto Efficient Frontier," Journal of Optimization Theory and Applications, Springer, vol. 113(1), pages 83-103, April.
    3. Vahid Mahmoodian & Iman Dayarian & Payman Ghasemi Saghand & Yu Zhang & Hadi Charkhgard, 2022. "A Criterion Space Branch-and-Cut Algorithm for Mixed Integer Bilinear Maximum Multiplicative Programs," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1453-1470, May.
    4. Jornada, Daniel & Leon, V. Jorge, 2016. "Biobjective robust optimization over the efficient set for Pareto set reduction," European Journal of Operational Research, Elsevier, vol. 252(2), pages 573-586.
    5. J. Glackin & J. G. Ecker & M. Kupferschmid, 2009. "Solving Bilevel Linear Programs Using Multiple Objective Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 140(2), pages 197-212, February.
    6. Sauli Ruuska & Kaisa Miettinen & Margaret M. Wiecek, 2012. "Connections Between Single-Level and Bilevel Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 153(1), pages 60-74, April.
    7. Alvaro Sierra Altamiranda & Hadi Charkhgard, 2019. "A New Exact Algorithm to Optimize a Linear Function over the Set of Efficient Solutions for Biobjective Mixed Integer Linear Programs," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 823-840, October.
    8. Daniel Jornada & V. Jorge Leon, 2020. "Filtering Algorithms for Biobjective Mixed Binary Linear Optimization Problems with a Multiple-Choice Constraint," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 57-73, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alves, Maria João & Costa, João Paulo, 2009. "An exact method for computing the nadir values in multiple objective linear programming," European Journal of Operational Research, Elsevier, vol. 198(2), pages 637-646, October.
    2. Serpil Sayin, 2003. "A Procedure to Find Discrete Representations of the Efficient Set with Specified Coverage Errors," Operations Research, INFORMS, vol. 51(3), pages 427-436, June.
    3. Ricardo Landa & Giomara Lárraga & Gregorio Toscano, 2019. "Use of a goal-constraint-based approach for finding the region of interest in multi-objective problems," Journal of Heuristics, Springer, vol. 25(1), pages 107-139, February.
    4. Tu, Ta Van, 2000. "Optimization over the efficient set of a parametric multiple objective linear programming problem," European Journal of Operational Research, Elsevier, vol. 122(3), pages 570-583, May.
    5. A.P. Wierzbicki, 1998. "Reference Point Methods in Vector Optimization and Decision Support," Working Papers ir98017, International Institute for Applied Systems Analysis.
    6. R. Horst & N. V. Thoai, 1997. "Utility Function Programs and Optimization over the Efficient Set in Multiple-Objective Decision Making," Journal of Optimization Theory and Applications, Springer, vol. 92(3), pages 605-631, March.
    7. Murat Köksalan & Banu Lokman, 2015. "Finding nadir points in multi-objective integer programs," Journal of Global Optimization, Springer, vol. 62(1), pages 55-77, May.
    8. Murat Köksalan & Banu Lokman, 2009. "Approximating the nondominated frontiers of multi‐objective combinatorial optimization problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(2), pages 191-198, March.
    9. Granat, Janusz & Guerriero, Francesca, 2003. "The interactive analysis of the multicriteria shortest path problem by the reference point method," European Journal of Operational Research, Elsevier, vol. 151(1), pages 103-118, November.
    10. Sun, Minghe, 2005. "Some issues in measuring and reporting solution quality of interactive multiple objective programming procedures," European Journal of Operational Research, Elsevier, vol. 162(2), pages 468-483, April.
    11. Stacey Faulkenberg & Margaret Wiecek, 2012. "Generating equidistant representations in biobjective programming," Computational Optimization and Applications, Springer, vol. 51(3), pages 1173-1210, April.
    12. Luque, M. & Marcenaro-Gutiérrez, O.D. & López-Agudo, L.A., 2015. "On the potential balance among compulsory education outcomes through econometric and multiobjective programming analysis," European Journal of Operational Research, Elsevier, vol. 241(2), pages 527-540.
    13. Kaliszewski, Ignacy, 2003. "Dynamic parametric bounds on efficient outcomes in interactive multiple criteria decision making problems," European Journal of Operational Research, Elsevier, vol. 147(1), pages 94-107, May.
    14. Mavrotas, George & Florios, Kostas, 2013. "An improved version of the augmented epsilon-constraint method (AUGMECON2) for finding the exact Pareto set in Multi-Objective Integer Programming problems," MPRA Paper 105034, University Library of Munich, Germany.
    15. Harold Benson, 2012. "An outcome space algorithm for optimization over the weakly efficient set of a multiple objective nonlinear programming problem," Journal of Global Optimization, Springer, vol. 52(3), pages 553-574, March.
    16. Harold P. Benson & Serpil Sayin, 1997. "Towards finding global representations of the efficient set in multiple objective mathematical programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(1), pages 47-67, February.
    17. Jeffrey Schavland & Yupo Chan & Richard A. Raines, 2009. "Information security: Designing a stochastic‐network for throughput and reliability," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(7), pages 625-641, October.
    18. Jian Hu & Sanjay Mehrotra, 2012. "Robust and Stochastically Weighted Multiobjective Optimization Models and Reformulations," Operations Research, INFORMS, vol. 60(4), pages 936-953, August.
    19. Özgür Özpeynirci, 2017. "On nadir points of multiobjective integer programming problems," Journal of Global Optimization, Springer, vol. 69(3), pages 699-712, November.
    20. Daniel Jornada & V. Jorge Leon, 2020. "Filtering Algorithms for Biobjective Mixed Binary Linear Optimization Problems with a Multiple-Choice Constraint," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 57-73, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:48:y:2000:i:1:p:65-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.