IDEAS home Printed from https://ideas.repec.org/a/spr/joecth/v71y2021i2d10.1007_s00199-020-01274-0.html
   My bibliography  Save this article

Internalization of social cost in congestion games

Author

Listed:
  • Igal Milchtaich

    (Bar-Ilan University)

Abstract

Congestion models may be studied from either the users’ point of view or the social one. The first perspective examines the incentives of individual users, who are only interested in their own, personal payoff or cost and ignore the negative externalities that their choice of resources creates for the other users. The second perspective concerns social goals such as the minimization of the mean travel time in a transportation network. This paper studies a more general setting, in which individual users attach to the social cost some weight r that is not necessarily 0 or 1. It examines the comparative statics question of whether higher r necessarily means higher social welfare at equilibrium.

Suggested Citation

  • Igal Milchtaich, 2021. "Internalization of social cost in congestion games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(2), pages 717-760, March.
  • Handle: RePEc:spr:joecth:v:71:y:2021:i:2:d:10.1007_s00199-020-01274-0
    DOI: 10.1007/s00199-020-01274-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00199-020-01274-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00199-020-01274-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuniavsky, Sergey & Smorodinsky, Rann, 2013. "Greediness and equilibrium in congestion games," Economics Letters, Elsevier, vol. 121(3), pages 499-503.
    2. Igal Milchtaich, 2015. "Network topology and equilibrium existence in weighted network congestion games," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(3), pages 515-541, August.
    3. Roberto Cominetti & José R. Correa & Nicolás E. Stier-Moses, 2009. "The Impact of Oligopolistic Competition in Networks," Operations Research, INFORMS, vol. 57(6), pages 1421-1437, December.
    4. Epstein, Amir & Feldman, Michal & Mansour, Yishay, 2009. "Efficient graph topologies in network routing games," Games and Economic Behavior, Elsevier, vol. 66(1), pages 115-125, May.
    5. Holzman, Ron & Law-Yone, Nissan, 1997. "Strong Equilibrium in Congestion Games," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 85-101, October.
    6. Holzman, Ron & Law-yone (Lev-tov), Nissan, 2003. "Network structure and strong equilibrium in route selection games," Mathematical Social Sciences, Elsevier, vol. 46(2), pages 193-205, October.
    7. Aviad Heifetz & Chris Shannon & Yossi Spiegel, 2007. "The Dynamic Evolution of Preferences," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 32(2), pages 251-286, August.
    8. Igal Milchtaich, 2013. "Representation of finite games as network congestion games," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(4), pages 1085-1096, November.
    9. Milchtaich, Igal, 2004. "Social optimality and cooperation in nonatomic congestion games," Journal of Economic Theory, Elsevier, vol. 114(1), pages 56-87, January.
    10. Milchtaich, Igal, 2012. "Comparative statics of altruism and spite," Games and Economic Behavior, Elsevier, vol. 75(2), pages 809-831.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Satoru Fujishige & Michel X. Goemans & Tobias Harks & Britta Peis & Rico Zenklusen, 2017. "Matroids Are Immune to Braess’ Paradox," Mathematics of Operations Research, INFORMS, vol. 42(3), pages 745-761, August.
    2. Xujin Chen & Zhuo Diao & Xiaodong Hu, 2022. "On weak Pareto optimality of nonatomic routing networks," Journal of Combinatorial Optimization, Springer, vol. 44(3), pages 1705-1723, October.
    3. Xujin Chen & Zhuo Diao & Xiaodong Hu, 0. "On weak Pareto optimality of nonatomic routing networks," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-19.
    4. Milchtaich, Igal, 2006. "Network topology and the efficiency of equilibrium," Games and Economic Behavior, Elsevier, vol. 57(2), pages 321-346, November.
    5. Marco Scarsini & Tristan Tomala, 2012. "Repeated congestion games with bounded rationality," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(3), pages 651-669, August.
    6. Epstein, Amir & Feldman, Michal & Mansour, Yishay, 2009. "Strong equilibrium in cost sharing connection games," Games and Economic Behavior, Elsevier, vol. 67(1), pages 51-68, September.
    7. Igal Milchtaich, 2015. "Network topology and equilibrium existence in weighted network congestion games," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(3), pages 515-541, August.
    8. Epstein, Amir & Feldman, Michal & Mansour, Yishay, 2009. "Efficient graph topologies in network routing games," Games and Economic Behavior, Elsevier, vol. 66(1), pages 115-125, May.
    9. T. Werth & H. Sperber & S. Krumke, 2014. "Computation of equilibria and the price of anarchy in bottleneck congestion games," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(4), pages 687-712, December.
    10. Yannai A. Gonczarowski & Moshe Tennenholtz, 2014. "Noncooperative Market Allocation and the Formation of Downtown," Discussion Paper Series dp663, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    11. Kukushkin, Nikolai S., 2017. "Strong Nash equilibrium in games with common and complementary local utilities," Journal of Mathematical Economics, Elsevier, vol. 68(C), pages 1-12.
    12. Yannai A. Gonczarowski & Moshe Tennenholtz, 2014. "Cascading to Equilibrium: Hydraulic Computation of Equilibria in Resource Selection Games," Discussion Paper Series dp673, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    13. Ron Holzman & Dov Monderer, 2015. "Strong equilibrium in network congestion games: increasing versus decreasing costs," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(3), pages 647-666, August.
    14. Andelman, Nir & Feldman, Michal & Mansour, Yishay, 2009. "Strong price of anarchy," Games and Economic Behavior, Elsevier, vol. 65(2), pages 289-317, March.
    15. Leah Epstein & Sven O. Krumke & Asaf Levin & Heike Sperber, 2011. "Selfish bin coloring," Journal of Combinatorial Optimization, Springer, vol. 22(4), pages 531-548, November.
    16. Król, Michał, 2012. "Product differentiation decisions under ambiguous consumer demand and pessimistic expectations," International Journal of Industrial Organization, Elsevier, vol. 30(6), pages 593-604.
    17. Di Feng & Bettina Klaus, 2022. "Preference revelation games and strict cores of multiple‐type housing market problems," International Journal of Economic Theory, The International Society for Economic Theory, vol. 18(1), pages 61-76, March.
    18. Edward Castronova, 2023. "Preference evolution, attention, and happiness," Kyklos, Wiley Blackwell, vol. 76(2), pages 301-315, May.
    19. Ingela Alger & Donald Cox, 2013. "The evolution of altruistic preferences: mothers versus fathers," Review of Economics of the Household, Springer, vol. 11(3), pages 421-446, September.
    20. Raimondo, Roberto, 2020. "Pathwise smooth splittable congestion games and inefficiency," Journal of Mathematical Economics, Elsevier, vol. 86(C), pages 15-23.

    More about this item

    Keywords

    Social cost; Congestion games; Altruism; Price of anarchy; Stability of equilibrium; Potential games;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joecth:v:71:y:2021:i:2:d:10.1007_s00199-020-01274-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.