IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v22y2014i4p687-712.html
   My bibliography  Save this article

Computation of equilibria and the price of anarchy in bottleneck congestion games

Author

Listed:
  • T. Werth
  • H. Sperber
  • S. Krumke

Abstract

We study Nash and strong equilibria in weighted and unweighted bottleneck games. In such a game every (weighted) player chooses a subset of a given set of resources as her strategy. The cost of a resource depends on the total weight of players choosing it and the personal cost every player tries to minimize is the cost of the most expensive resource in her strategy, the bottleneck value. To derive efficient algorithms for finding equilibria in unweighted games, we generalize a transformation of a bottleneck game into a congestion game with exponential cost functions introduced by Caragiannis et al. ( 2005 ). For weighted routing games we show that Greedy methods give Nash equilibria in extension-parallel and series-parallel graphs. Furthermore, we show that the strong Price of Anarchy can be arbitrarily high for special cases and give tight bounds depending on the topology of the graph, the number and weights of the users and the degree of the polynomial latency functions. Additionally we investigate the existence of equilibria in generalized bottleneck games, where players aim to minimize not only the bottleneck value, but also the second most expensive resource in their strategy and so on. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • T. Werth & H. Sperber & S. Krumke, 2014. "Computation of equilibria and the price of anarchy in bottleneck congestion games," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(4), pages 687-712, December.
  • Handle: RePEc:spr:cejnor:v:22:y:2014:i:4:p:687-712
    DOI: 10.1007/s10100-013-0295-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10100-013-0295-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10100-013-0295-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James Roskind & Robert E. Tarjan, 1985. "A Note on Finding Minimum-Cost Edge-Disjoint Spanning Trees," Mathematics of Operations Research, INFORMS, vol. 10(4), pages 701-708, November.
    2. Holzman, Ron & Law-yone (Lev-tov), Nissan, 2003. "Network structure and strong equilibrium in route selection games," Mathematical Social Sciences, Elsevier, vol. 46(2), pages 193-205, October.
    3. Milchtaich, Igal, 2006. "Network topology and the efficiency of equilibrium," Games and Economic Behavior, Elsevier, vol. 57(2), pages 321-346, November.
    4. José R. Correa & Andreas S. Schulz & Nicolás E. Stier-Moses, 2004. "Selfish Routing in Capacitated Networks," Mathematics of Operations Research, INFORMS, vol. 29(4), pages 961-976, November.
    5. Epstein, Amir & Feldman, Michal & Mansour, Yishay, 2009. "Efficient graph topologies in network routing games," Games and Economic Behavior, Elsevier, vol. 66(1), pages 115-125, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Satoru Fujishige & Michel X. Goemans & Tobias Harks & Britta Peis & Rico Zenklusen, 2017. "Matroids Are Immune to Braess’ Paradox," Mathematics of Operations Research, INFORMS, vol. 42(3), pages 745-761, August.
    2. Xujin Chen & Zhuo Diao & Xiaodong Hu, 2022. "On weak Pareto optimality of nonatomic routing networks," Journal of Combinatorial Optimization, Springer, vol. 44(3), pages 1705-1723, October.
    3. Xujin Chen & Zhuo Diao & Xiaodong Hu, 0. "On weak Pareto optimality of nonatomic routing networks," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-19.
    4. Macault, Emilien & Scarsini, Marco & Tomala, Tristan, 2022. "Social learning in nonatomic routing games," Games and Economic Behavior, Elsevier, vol. 132(C), pages 221-233.
    5. Kuniavsky, Sergey & Smorodinsky, Rann, 2013. "Greediness and equilibrium in congestion games," Economics Letters, Elsevier, vol. 121(3), pages 499-503.
    6. Marco Scarsini & Tristan Tomala, 2012. "Repeated congestion games with bounded rationality," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(3), pages 651-669, August.
    7. Epstein, Amir & Feldman, Michal & Mansour, Yishay, 2009. "Strong equilibrium in cost sharing connection games," Games and Economic Behavior, Elsevier, vol. 67(1), pages 51-68, September.
    8. Thanasis Lianeas & Evdokia Nikolova & Nicolas E. Stier-Moses, 2019. "Risk-Averse Selfish Routing," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 38-57, February.
    9. Epstein, Amir & Feldman, Michal & Mansour, Yishay, 2009. "Efficient graph topologies in network routing games," Games and Economic Behavior, Elsevier, vol. 66(1), pages 115-125, May.
    10. Igal Milchtaich, 2021. "Internalization of social cost in congestion games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(2), pages 717-760, March.
    11. Ron Holzman & Dov Monderer, 2015. "Strong equilibrium in network congestion games: increasing versus decreasing costs," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(3), pages 647-666, August.
    12. Hoang, Nam H. & Vu, Hai L. & Lo, Hong K., 2018. "An informed user equilibrium dynamic traffic assignment problem in a multiple origin-destination stochastic network," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 207-230.
    13. Daron Acemoglu & Asuman Ozdaglar, 2005. "Competition and Efficiency in Congested Markets," NBER Working Papers 11201, National Bureau of Economic Research, Inc.
    14. E. Nikolova & N. E. Stier-Moses, 2014. "A Mean-Risk Model for the Traffic Assignment Problem with Stochastic Travel Times," Operations Research, INFORMS, vol. 62(2), pages 366-382, April.
    15. Raimondo, Roberto, 2020. "Pathwise smooth splittable congestion games and inefficiency," Journal of Mathematical Economics, Elsevier, vol. 86(C), pages 15-23.
    16. Gur, Yonatan & Iancu, Dan & Warnes, Xavier, 2020. "Value Loss in Allocation Systems with Provider Guarantees," Research Papers 3813, Stanford University, Graduate School of Business.
    17. Saurabh Amin & Patrick Jaillet & Haripriya Pulyassary & Manxi Wu, 2023. "Market Design for Dynamic Pricing and Pooling in Capacitated Networks," Papers 2307.03994, arXiv.org, revised Nov 2023.
    18. Morales, Dolores Romero & Vermeulen, Dries, 2009. "Existence of equilibria in a decentralized two-level supply chain," European Journal of Operational Research, Elsevier, vol. 197(2), pages 642-658, September.
    19. Parilina, Elena & Sedakov, Artem & Zaccour, Georges, 2017. "Price of anarchy in a linear-state stochastic dynamic game," European Journal of Operational Research, Elsevier, vol. 258(2), pages 790-800.
    20. Vincenzo Bonifaci & Tobias Harks & Guido Schäfer, 2010. "Stackelberg Routing in Arbitrary Networks," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 330-346, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:22:y:2014:i:4:p:687-712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.